All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 87527 by mathmax by abdo last updated on 04/Apr/20
find∫0∞arctan(3x)x2+x+1dx
Commented by mathmax by abdo last updated on 05/Apr/20
letf(t)=∫0∞arctan(tx)x2+x+1dxwitht>0wehavef′(t)=∫0∞x(1+t2x2)(x2+x+1)dx=tx=u∫0∞ut(1+u2)(u2t2+ut+1)dut=∫0∞udu(1+u2)(u2+tu+t2)u2+tu+t2→Δ=t2−4t2=−3t2<0⇒F(u)=u(u2+1)(u2+tu+t2)=au+bu2+1+cu+du2+tu+t2limu→+∞uF(u)=0=a+c⇒c=−a⇒F(u)=au+bu2+1+−au+du2+tu+t2F(0)=0=b+d⇒d=−b⇒F(u)=au+bu2+1−au+bu2+tu+t2F(1)=12(t2+t+1)=a+b2−a+bt2+t+1⇒12=a+b2(t2+t+1)−(a+b)⇒1=(a+b)(t2+t+1)−2a−2b⇒(t2+t−1)a+(t2+t−1)b=1F(−1)=−12(t2−t+1)=−a+b2+a+bt2−t+1⇒−1=(t2−t+1)(−a+b)+2(a+b)⇒1=(t2−t+1)(a−b)−2a−2b⇒1=(t2−t−1)a−(t2−t−1)bwegetthesystem{(t2+t−1)a+(t2+t−1)b=1(t2−t−1)a−(t2−t−1)b=1Δ=−(t2+t−1)(t2−t−1)−(t2−t−1)(t2+t−1)=−2((t2−1)2−t2)=−2(t4−2t2+1−t2)=−2(t4−3t2+1)Δa=|1t2+t−11−t2+t+1|=−t2+t+1−t2−t+1=−2t2+2Δb=|t2+t−11t2−t−11|=t2+t−1−t2+t+1=2t⇒a=−2t2+2−2(t4−3t2+1)=t2−1t4−3t2+1b=2t−2(t4−3t2+1)=−tt4−3t2+1....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com