Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 87530 by mathmax by abdo last updated on 04/Apr/20

1) calculate U_n =∫_0 ^∞  e^(−n[x]) sin(((πx)/n))dx  nnatural and n≥1  2)determine nature of Σ U_n

1)calculateUn=0en[x]sin(πxn)dxnnaturalandn12)determinenatureofΣUn

Commented by mathmax by abdo last updated on 05/Apr/20

1) U_n =Σ_(p=0) ^∞  ∫_p ^(p+1)  e^(−np)  sin(((πx)/n))dx  =Σ_(p=0) ^∞  e^(−np)  ∫_p ^(p+1)  sin(((πx)/n))dx   =Σ_(p=0) ^∞  e^(−np)  [−(n/π)cos(((πx)/n))]_p ^(p+1)   =−(n/π)Σ_(p=0) ^∞  e^(−np) { cos((π/n)(p+1)}−cos(((pπ)/n))}  =−(n/π)Σ_(p=0) ^∞  e^(−np)  cos(((π(p+1))/n))+(n/π)Σ_(p=0) ^∞  e^(−np)  cos(((pπ)/n))  we have Σ_(p=0) ^∞  e^(−np)  cos(((pπ)/n)) =Re(Σ_(p=0) ^∞  e^(−np+i((pπ)/n)) )=Re(A_n )  and A_n =Σ_(p=0) ^∞   (e^(−n+((iπ)/n)) )^p   =(1/(1−e^(−n+((iπ)/n)) ))  =(1/(1−e^(−n) {cos((π/n))+isin((π/n))})) =(1/(1−e^(−n)  cos((π/n))−ie^(−n)  sin((π/n))))  =((1−e^(−n)  cos((π/n))+ie^(−n)  sin((π/n)))/((1−e^(−n)  cos((π/n)))^2  +e^(−2n)  sin^2 ((π/n)))) ⇒  A_n =((1−e^(−n)  cos((π/n)))/((1−e^(−n)  cos((π/n)))^2  +e^(−2n)  sin^2 ((π/n))))  Σ_(p=0) ^∞  e^(−np)  cos(((π(p+1))/n)) =Σ_(p=1) ^∞  e^(−n(p−1))  cos(((πp)/n))  =e^n  Σ_(p=1) ^∞  e^(−np)  cos(((πp)/n)) =e^n (Σ_(p=1) ^∞  e^(−np)  cos(((πp)/n))−1)  =e^n (A_n −1) ⇒ U_n =−(n/π)e^n (A_n −1) +(n/π) A_n   ⇒ U_n =(n/π)(1−e^n )A_n  +((ne^n )/π)

1)Un=p=0pp+1enpsin(πxn)dx=p=0enppp+1sin(πxn)dx=p=0enp[nπcos(πxn)]pp+1=nπp=0enp{cos(πn(p+1)}cos(pπn)}=nπp=0enpcos(π(p+1)n)+nπp=0enpcos(pπn)wehavep=0enpcos(pπn)=Re(p=0enp+ipπn)=Re(An)andAn=p=0(en+iπn)p=11en+iπn=11en{cos(πn)+isin(πn)}=11encos(πn)iensin(πn)=1encos(πn)+iensin(πn)(1encos(πn))2+e2nsin2(πn)An=1encos(πn)(1encos(πn))2+e2nsin2(πn)p=0enpcos(π(p+1)n)=p=1en(p1)cos(πpn)=enp=1enpcos(πpn)=en(p=1enpcos(πpn)1)=en(An1)Un=nπen(An1)+nπAnUn=nπ(1en)An+nenπ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com