Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 87533 by mr W last updated on 04/Apr/20

Commented by MJS last updated on 05/Apr/20

a=((49)/(76))±((457(√(87)))/(6612))  b=((49)/(76))∓((457(√(87)))/(6612))  x=−7±(√(87))  y=−7∓(√(87))  answer is 20

a=4976±457876612b=4976457876612x=7±87y=787answeris20

Commented by mr W last updated on 05/Apr/20

thanks sir!

thankssir!

Answered by ajfour last updated on 05/Apr/20

let  ax=s,  by=t  ⇒  s+t=3           ....(i)         sx+ty=7      ....(ii)         sx^2 +ty^2 =16    ...(iii)         sx^3 +ty^3 =42    ...(iv)         Q=sx^4 +ty^4 =?    (ii)−y×(i)     s(x−y)=7−3y      .....(A)    (iii)−y×(ii)     sx(x−y)=16−7y      ....(B)  ⇒    x=((16−7y)/(7−3y))            .....(I)   (iii)−y^2 ×(i)    s(x^2 −y^2 )=16−3y^2        ....(C)    (iv)−y^2 ×(ii)    sx(x^2 −y^2 )=42−7y^2       ....(D)  ⇒   x=((42−7y^2 )/(16−3y^2 ))           .....(II)  equating   (I) & (II)     ((16−7y)/(7−3y))=((42−7y^2 )/(16−3y^2 ))  256−48y^2 −112y+21y^3       = 294−49y^2 −126y+21y^3     ⇒  y^2 +14y−38=0    y_1 =−7−(√(87)) ,  y_2 =−7+(√(87))    x_1 =((16−7y_1 )/(7−3y_1 ))=((16+7((√(87))+7))/(7+3((√(87))+7)))       = ((65+7(√(87)))/(28+3(√(87)))) = −7+(√(87))  lets  proceed with  just x_1 , y_1 .    s+t=3    sx+ty=7   ⇒  sx+(3−s)y=7  ⇒  s =((7−3y)/(x−y))=((7+3(7+(√(87))))/(2(√(87))))            = ((28+3(√(87)))/(2(√(87)))) = ((261+28(√(87)))/(174))     t=3−s = ((261−28(√(87)))/(174))         Q=sx^4 +ty^4      = ((261+28(√(87)))/(174))×{(√(87))−7}^4         +((261−28(√(87)))/(174))×{−(√(87))−7}^4     =2×10^1  .

letax=s,by=ts+t=3....(i)sx+ty=7....(ii)sx2+ty2=16...(iii)sx3+ty3=42...(iv)Q=sx4+ty4=?(ii)y×(i)s(xy)=73y.....(A)(iii)y×(ii)sx(xy)=167y....(B)x=167y73y.....(I)(iii)y2×(i)s(x2y2)=163y2....(C)(iv)y2×(ii)sx(x2y2)=427y2....(D)x=427y2163y2.....(II)equating(I)&(II)167y73y=427y2163y225648y2112y+21y3=29449y2126y+21y3y2+14y38=0y1=787,y2=7+87x1=167y173y1=16+7(87+7)7+3(87+7)=65+78728+387=7+87letsproceedwithjustx1,y1.s+t=3sx+ty=7sx+(3s)y=7s=73yxy=7+3(7+87)287=28+387287=261+2887174t=3s=2612887174Q=sx4+ty4=261+2887174×{877}4+2612887174×{877}4=2×101.

Commented by mr W last updated on 05/Apr/20

thanks sir!

thankssir!

Commented by ajfour last updated on 05/Apr/20

 Have you devised some  still shorter better way sir,  if so, please share..

Haveyoudevisedsomestillshorterbetterwaysir,ifso,pleaseshare..

Commented by mr W last updated on 05/Apr/20

i have tried the same way as santu sir,  i have no other better way.   i′m considering how to get ax^n +by^n =?  for n≥5, see an attempt below.

ihavetriedthesamewayassantusir,ihavenootherbetterway.imconsideringhowtogetaxn+byn=?forn5,seeanattemptbelow.

Answered by john santu last updated on 05/Apr/20

(i)(ax^4  + by^4 )(x+y) = 42(x+y)  ax^5 +b^y  +ax^4 y + bxy^4  = 42(x+y)  ax^5 +by^5 +xy(ax^3 +by^3 ) = 42(x+y)  (ii)(ax^2 +by^2 )(x+y) = 7(x+y)  ax^3 +by^3 +xy(ax+by)   7(x+y) = 16+xy .3  16(x+y) = 42 +xy.7  x+y = −14 ∧ xy = −38  ⇒ax^5 +by^5  = 42(−14)+(38)(16)  = −588 + 608 = 20

(i)(ax4+by4)(x+y)=42(x+y)ax5+by+ax4y+bxy4=42(x+y)ax5+by5+xy(ax3+by3)=42(x+y)(ii)(ax2+by2)(x+y)=7(x+y)ax3+by3+xy(ax+by)7(x+y)=16+xy.316(x+y)=42+xy.7x+y=14xy=38ax5+by5=42(14)+(38)(16)=588+608=20

Commented by ajfour last updated on 05/Apr/20

Superb Sir! Congratulations,  ingenious way.

SuperbSir!Congratulations,ingeniousway.

Commented by jagoll last updated on 05/Apr/20

thank you sir

thankyousir

Commented by mr W last updated on 05/Apr/20

thanks sir!

thankssir!

Commented by mr W last updated on 05/Apr/20

i think this is the best way. but can we  apply it to get ax^n +by^n  generally?  i think this is possible, see below.

ithinkthisisthebestway.butcanweapplyittogetaxn+byngenerally?ithinkthisispossible,seebelow.

Answered by mr W last updated on 26/Oct/21

S_n =ax^n +by^n   S_1 =3  S_2 =7  S_3 =16  S_4 =42  S_(n+1) =ax^(n+1) +by^(n+1)   (x+y)S_n =(x+y)(ax^n +by^n )=ax^(n+1) +by^(n+1) +xy(ax^(n−1) +by^(n−1) )  (x+y)S_n =S_(n+1) +xyS_(n−1)   ⇒S_(n+1) =(x+y)S_n −xyS_(n−1)   let x+y=p, xy=q  ⇒S_(n+1) =pS_n −qS_(n−1)      ...(i)  S_3 =pS_2 −qS_1   S_4 =pS_3 −qS_2   ⇒p=((S_1 S_4 −S_2 S_3 )/(S_1 S_3 −S_2 ^2 ))=((3×42−7×16)/(3×16−7^2 ))=−14  ⇒q=((S_2 S_4 −S_3 ^2 )/(S_1 S_3 −S_2 ^2 ))=((7×42−16^2 )/(3×16−7^2 ))=−38    a=((S_2 −S_1 y)/(x(x−y)))  b=((S_2 −S_1 x)/(y(y−x)))    S_2 =pS_1 −qS_0   ⇒S_0 =a+b=((pS_1 −S_2 )/q)    from (i) we have the characteristic eqn.  t^2 −pt+q=0  t=((p±(√(p^2 −4q)))/2)  let α=((p+(√(p^2 −4q)))/2), β=((p−(√(p^2 −4q)))/2)  ⇒S_n =Aα^n +Bβ^n    ...(ii)    S_1 =Aα+Bβ   ...(iii)  S_2 =Aα^2 +Bβ^2    ...(iv)  ⇒A=((βS_1 −S_2 )/(α(β−α)))  ⇒B=((αS_1 −S_2 )/(β(α−β)))    with our example:  α=((−14+(√(14^2 +4×38)))/2)=−7+(√(87))  β=((−14−(√(14^2 +4×38)))/2)=−7−(√(87))  A=(1/(76))(49+((457(√(87)))/(87)))  B=(1/(76))(49−((457(√(87)))/(87)))    S_n =(1/(76)){(49+((457(√(87)))/(87)))(−7+(√(87)))^n +(49+((457(√(87)))/(87)))(−7−(√(87)))^n }  we get:  S_5 =20  S_6 =1316  S_7 =−17446  S_8 =297304  S_9 =−4833488  S_(10) =79966384

Sn=axn+bynS1=3S2=7S3=16S4=42Sn+1=axn+1+byn+1(x+y)Sn=(x+y)(axn+byn)=axn+1+byn+1+xy(axn1+byn1)(x+y)Sn=Sn+1+xySn1Sn+1=(x+y)SnxySn1letx+y=p,xy=qSn+1=pSnqSn1...(i)S3=pS2qS1S4=pS3qS2p=S1S4S2S3S1S3S22=3×427×163×1672=14q=S2S4S32S1S3S22=7×421623×1672=38a=S2S1yx(xy)b=S2S1xy(yx)S2=pS1qS0S0=a+b=pS1S2qfrom(i)wehavethecharacteristiceqn.t2pt+q=0t=p±p24q2letα=p+p24q2,β=pp24q2Sn=Aαn+Bβn...(ii)S1=Aα+Bβ...(iii)S2=Aα2+Bβ2...(iv)A=βS1S2α(βα)B=αS1S2β(αβ)withourexample:α=14+142+4×382=7+87β=14142+4×382=787A=176(49+4578787)B=176(494578787)Sn=176{(49+4578787)(7+87)n+(49+4578787)(787)n}weget:S5=20S6=1316S7=17446S8=297304S9=4833488S10=79966384

Commented by john santu last updated on 05/Apr/20

great sir

greatsir

Commented by mr W last updated on 05/Apr/20

recursively we can get  S_5 =−14S_4 +38S_3 =−14×42+38×16=20  S_6 =−14S_5 +38S_4 =−14×20+38×42=1316  S_7 =−14S_6 +38S_5 =−14×1316+38×20=−17664  ...

recursivelywecangetS5=14S4+38S3=14×42+38×16=20S6=14S5+38S4=14×20+38×42=1316S7=14S6+38S5=14×1316+38×20=17664...

Commented by TawaTawa1 last updated on 05/Apr/20

Wow great sir.  God bless you sir.

Wowgreatsir.Godblessyousir.

Commented by TawaTawa1 last updated on 05/Apr/20

Sir,  what of   if        x  ±  (1/x)   =  a  Then          x^n   ±  (1/x^n )   =   ???  What is the general form sir?

Sir,whatofifx±1x=aThenxn±1xn=???Whatisthegeneralformsir?

Commented by mr W last updated on 05/Apr/20

this question is already answered n  times, please try to find an old post  concerning this question. the solution  is also easy: get x from x±(1/x)=a, this  should be solvable. then you can get  x^n ±(1/x^n ).

thisquestionisalreadyansweredntimes,pleasetrytofindanoldpostconcerningthisquestion.thesolutionisalsoeasy:getxfromx±1x=a,thisshouldbesolvable.thenyoucangetxn±1xn.

Commented by TawaTawa1 last updated on 05/Apr/20

God bless you sir.

Godblessyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com