All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 87534 by mathmax by abdo last updated on 04/Apr/20
calculate∫0π4arctan(sinx)sinxdx
Commented by mathmax by abdo last updated on 06/Apr/20
letf(a)=∫0π4arctan(asinx)sinxdxwitha>0f′(a)=∫0π4sinx(1+a2sin2x)sinxdx=∫0π4dx1+a2×1−cos(2x)2=2∫0π4dx2+a2−a2cos(2x)=2x=t2∫0π2dt2(2+a2−a2cost)=tan(t2)=u∫012du(1+u2)(2+a2−a21−u21+u2)=∫012du2+a2+(2+a2)u2−a2+a2u2=∫012du2+(2+2a2)u2=∫01du1+(1+a2)u2=1+a2u=z∫01+a2dz1+a2(1+z2)=11+a2arctan(1+a2)⇒f(a)=∫0aarctan(1+α2)1+α2dα+cc=f(0)=0⇒f(a)=∫0aarctan(1+α2)1+α2dαand∫0π4arctan(sinx)sinxdx=∫01arctan(1+x2)1+x2dx....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com