Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87534 by mathmax by abdo last updated on 04/Apr/20

calculate ∫_0 ^(π/4)  ((arctan(sinx))/(sinx))dx

calculate0π4arctan(sinx)sinxdx

Commented by mathmax by abdo last updated on 06/Apr/20

let f(a) =∫_0 ^(π/4)  ((arctan(asinx))/(sinx))dx with a>0  f^′ (a) =∫_0 ^(π/4)  ((sinx)/((1+a^2  sin^2 x)sinx))dx =∫_0 ^(π/4)  (dx/(1+a^2 ×((1−cos(2x))/2)))  =2∫_0 ^(π/4)  (dx/(2+a^2 −a^2 cos(2x))) =_(2x=t)   2 ∫_0 ^(π/2)   (dt/(2(2+a^2 −a^2 cost)))  =_(tan((t/2))=u)    ∫_0 ^1    ((2du)/((1+u^2 )(2+a^2 −a^2 ((1−u^2 )/(1+u^2 )))))  =∫_0 ^1  ((2du)/(2+a^2  +(2+a^2 )u^2 −a^2  +a^2 u^2 )) =∫_0 ^1  ((2du)/(2 +(2+2a^2 )u^2 ))  =∫_0 ^1  (du/(1+(1+a^2 )u^2 )) =_((√(1+a^2 ))u=z)     ∫_0 ^(√(1+a^2 ))    (dz/((√(1+a^2 ))(1+z^2 )))  =(1/(√(1+a^2 ))) arctan((√(1+a^2 ))) ⇒f(a) =∫_0 ^a  ((arctan((√(1+α^2 ))))/(√(1+α^2 ))) dα +c  c=f(0)=0 ⇒f(a) =∫_0 ^a  ((arctan((√(1+α^2 ))))/(√(1+α^2 ))) dα  and ∫_0 ^(π/4)  ((arctan(sinx))/(sinx))dx =∫_0 ^1  ((arctan((√(1+x^2 ))))/(√(1+x^2 )))dx....be continued...

letf(a)=0π4arctan(asinx)sinxdxwitha>0f(a)=0π4sinx(1+a2sin2x)sinxdx=0π4dx1+a2×1cos(2x)2=20π4dx2+a2a2cos(2x)=2x=t20π2dt2(2+a2a2cost)=tan(t2)=u012du(1+u2)(2+a2a21u21+u2)=012du2+a2+(2+a2)u2a2+a2u2=012du2+(2+2a2)u2=01du1+(1+a2)u2=1+a2u=z01+a2dz1+a2(1+z2)=11+a2arctan(1+a2)f(a)=0aarctan(1+α2)1+α2dα+cc=f(0)=0f(a)=0aarctan(1+α2)1+α2dαand0π4arctan(sinx)sinxdx=01arctan(1+x2)1+x2dx....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com