Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 87536 by M±th+et£s last updated on 04/Apr/20

solve   ∣2x−1∣=3⌊x⌋+2{x}

solve2x1∣=3x+2{x}

Answered by mr W last updated on 05/Apr/20

x=n+δ  ⌊x⌋=n  {x}=δ  2x−1=2n+2δ−1    if 2x−1≥0, i.e. x≥(1/2):  2n+2δ−1=3n+2δ  ⇒2n−1=3n ⇒n=−1  ⇒δ=any value 0≤δ<0  ⇒−1≤x<0  ⇒no solution    if 2x−1<0, i.e. x<(1/2):  −2n−2δ+1=3n+2δ  5n+4δ=1  4δ must be intger.  δ=0: 5n=1 ⇒no solution  δ=(1/4): 5n=0 ⇒n=0 ⇒x=(1/4) <(1/2)⇒solution  δ=(1/2): 5n=−1 ⇒no solution   δ=(3/4): 5n=−2 ⇒no solution    ⇒only solution is x=(1/4).

x=n+δx=n{x}=δ2x1=2n+2δ1if2x10,i.e.x12:2n+2δ1=3n+2δ2n1=3nn=1δ=anyvalue0δ<01x<0nosolutionif2x1<0,i.e.x<12:2n2δ+1=3n+2δ5n+4δ=14δmustbeintger.δ=0:5n=1nosolutionδ=14:5n=0n=0x=14<12solutionδ=12:5n=1nosolutionδ=34:5n=2nosolutiononlysolutionisx=14.

Commented by M±th+et£s last updated on 05/Apr/20

thank you sir nice solution

thankyousirnicesolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com