Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87538 by Power last updated on 04/Apr/20

Commented by mathmax by abdo last updated on 04/Apr/20

I =∫_(−1) ^1  f^(−1) (x)dx   changement f^(−1) (x)=t give x =f(t)⇒  dx =f^′ (t)dt ⇒ I =∫_(f^(−1) (−1)) ^(f^(−1) (1))  t f^′ (t)dt  =_(by parts)   =[(t^2 /2)f(t)]_(f^(−1) (−1)) ^(f^(−1) (1))  −∫_(f^(−1) (−1)) ^(f^(−1) (1))  (t^2 /2)f(t)dt  =(1/2){ (f^(−1) (1))^2 + (f^(−1) (−1))^2 }−(1/2)∫_(f^(−1) (−1)) ^(f^(−1) (1))   t^2 (t^3 +t−1)dt  we hsve  ∫_(f^(−1) (−1)) ^(f^(−1) (1)) (t^5  +t^3 −t^2 )dt  [(t^6 /6)+(t^4 /4)−(t^3 /3)]_(f^(−1) (−1)) ^(f^(−1) (1))       rest calculus of f^(−1) (1) and f^(−1) (−1)  ...be continued...

$${I}\:=\int_{−\mathrm{1}} ^{\mathrm{1}} \:{f}^{−\mathrm{1}} \left({x}\right){dx}\:\:\:{changement}\:{f}^{−\mathrm{1}} \left({x}\right)={t}\:{give}\:{x}\:={f}\left({t}\right)\Rightarrow \\ $$$${dx}\:={f}^{'} \left({t}\right){dt}\:\Rightarrow\:{I}\:=\int_{{f}^{−\mathrm{1}} \left(−\mathrm{1}\right)} ^{{f}^{−\mathrm{1}} \left(\mathrm{1}\right)} \:{t}\:{f}^{'} \left({t}\right){dt}\:\:=_{{by}\:{parts}} \\ $$$$=\left[\frac{{t}^{\mathrm{2}} }{\mathrm{2}}{f}\left({t}\right)\right]_{{f}^{−\mathrm{1}} \left(−\mathrm{1}\right)} ^{{f}^{−\mathrm{1}} \left(\mathrm{1}\right)} \:−\int_{{f}^{−\mathrm{1}} \left(−\mathrm{1}\right)} ^{{f}^{−\mathrm{1}} \left(\mathrm{1}\right)} \:\frac{{t}^{\mathrm{2}} }{\mathrm{2}}{f}\left({t}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\left({f}^{−\mathrm{1}} \left(\mathrm{1}\right)\right)^{\mathrm{2}} +\:\left({f}^{−\mathrm{1}} \left(−\mathrm{1}\right)\right)^{\mathrm{2}} \right\}−\frac{\mathrm{1}}{\mathrm{2}}\int_{{f}^{−\mathrm{1}} \left(−\mathrm{1}\right)} ^{{f}^{−\mathrm{1}} \left(\mathrm{1}\right)} \:\:{t}^{\mathrm{2}} \left({t}^{\mathrm{3}} +{t}−\mathrm{1}\right){dt} \\ $$$${we}\:{hsve} \\ $$$$\int_{{f}^{−\mathrm{1}} \left(−\mathrm{1}\right)} ^{{f}^{−\mathrm{1}} \left(\mathrm{1}\right)} \left({t}^{\mathrm{5}} \:+{t}^{\mathrm{3}} −{t}^{\mathrm{2}} \right){dt} \\ $$$$\left[\frac{{t}^{\mathrm{6}} }{\mathrm{6}}+\frac{{t}^{\mathrm{4}} }{\mathrm{4}}−\frac{{t}^{\mathrm{3}} }{\mathrm{3}}\right]_{{f}^{−\mathrm{1}} \left(−\mathrm{1}\right)} ^{{f}^{−\mathrm{1}} \left(\mathrm{1}\right)} \:\:\:\:\:\:{rest}\:{calculus}\:{of}\:{f}^{−\mathrm{1}} \left(\mathrm{1}\right)\:{and}\:{f}^{−\mathrm{1}} \left(−\mathrm{1}\right) \\ $$$$...{be}\:{continued}... \\ $$

Commented by Power last updated on 04/Apr/20

sir step by step solution please

$$\mathrm{sir}\:\mathrm{step}\:\mathrm{by}\:\mathrm{step}\:\mathrm{solution}\:\mathrm{please} \\ $$

Commented by MJS last updated on 04/Apr/20

(5/4)

$$\frac{\mathrm{5}}{\mathrm{4}} \\ $$

Commented by mathmax by abdo last updated on 04/Apr/20

let solve f(x)=y ⇒x^3  +x−1 =y let x =u+v ⇒  (u+v)^3  +u+v−1−y =0 ⇒u^3  +v^3  +3uv(u+v) +u+v −1−y =0 ⇒  u^3  +v^3  −1−y +(u+v)(3uv +1) =0 ⇒ { ((u^3  +y^3 =1+y)),((uv =−(1/3))) :}  ⇒  { (( u^3  +v^3  =1+y)),((u^3  v^3  =−(1/(27)))) :}  ⇒ u^3  and v^3  are solution of X^2 −(1+y)X −(1/(27)) =0  Δ =(1+y)^2  +(4/(27)) ⇒X_1 =((1+y +(√((1+y)^2  +(4/(27)))))/2)  X_2 =((1+y−(√((1+y)^2 +(4/(27)))))/2) ⇒  u =^3 (√((1+y+(√((1+y)^2  +(4/(27)))))/2)) and v =^3 (√((1+y−(√((1+y)^2 +(4/(27)))))/2))  or u =−^3 (√(...))  and v =−^3 (√(....))  (  uv<0) ⇒  f^(−1) (x) =^3 (√((1+x+(√((1+x)^2  +(4/(27)))))/2)) +^3 (√((1+x−(√((1+x)^2 +(4/(27)))))/2))  ⇒f^(−1) (−1) =^3 (√(1/(27)))−^3 (√(1/(27))) =0  f^(−1) (1) =^3 (√((2+(√(4+(4/(27)))))/2)) +^3 (√((2−(√(4+(4/(27)))))/2))

$${let}\:{solve}\:{f}\left({x}\right)={y}\:\Rightarrow{x}^{\mathrm{3}} \:+{x}−\mathrm{1}\:={y}\:{let}\:{x}\:={u}+{v}\:\Rightarrow \\ $$$$\left({u}+{v}\right)^{\mathrm{3}} \:+{u}+{v}−\mathrm{1}−{y}\:=\mathrm{0}\:\Rightarrow{u}^{\mathrm{3}} \:+{v}^{\mathrm{3}} \:+\mathrm{3}{uv}\left({u}+{v}\right)\:+{u}+{v}\:−\mathrm{1}−{y}\:=\mathrm{0}\:\Rightarrow \\ $$$${u}^{\mathrm{3}} \:+{v}^{\mathrm{3}} \:−\mathrm{1}−{y}\:+\left({u}+{v}\right)\left(\mathrm{3}{uv}\:+\mathrm{1}\right)\:=\mathrm{0}\:\Rightarrow\begin{cases}{{u}^{\mathrm{3}} \:+{y}^{\mathrm{3}} =\mathrm{1}+{y}}\\{{uv}\:=−\frac{\mathrm{1}}{\mathrm{3}}}\end{cases} \\ $$$$\Rightarrow\:\begin{cases}{\:{u}^{\mathrm{3}} \:+{v}^{\mathrm{3}} \:=\mathrm{1}+{y}}\\{{u}^{\mathrm{3}} \:{v}^{\mathrm{3}} \:=−\frac{\mathrm{1}}{\mathrm{27}}}\end{cases} \\ $$$$\Rightarrow\:{u}^{\mathrm{3}} \:{and}\:{v}^{\mathrm{3}} \:{are}\:{solution}\:{of}\:{X}^{\mathrm{2}} −\left(\mathrm{1}+{y}\right){X}\:−\frac{\mathrm{1}}{\mathrm{27}}\:=\mathrm{0} \\ $$$$\Delta\:=\left(\mathrm{1}+{y}\right)^{\mathrm{2}} \:+\frac{\mathrm{4}}{\mathrm{27}}\:\Rightarrow{X}_{\mathrm{1}} =\frac{\mathrm{1}+{y}\:+\sqrt{\left(\mathrm{1}+{y}\right)^{\mathrm{2}} \:+\frac{\mathrm{4}}{\mathrm{27}}}}{\mathrm{2}} \\ $$$${X}_{\mathrm{2}} =\frac{\mathrm{1}+{y}−\sqrt{\left(\mathrm{1}+{y}\right)^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{27}}}}{\mathrm{2}}\:\Rightarrow \\ $$$${u}\:=^{\mathrm{3}} \sqrt{\frac{\mathrm{1}+{y}+\sqrt{\left(\mathrm{1}+{y}\right)^{\mathrm{2}} \:+\frac{\mathrm{4}}{\mathrm{27}}}}{\mathrm{2}}}\:{and}\:{v}\:=^{\mathrm{3}} \sqrt{\frac{\mathrm{1}+{y}−\sqrt{\left(\mathrm{1}+{y}\right)^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{27}}}}{\mathrm{2}}} \\ $$$${or}\:{u}\:=−^{\mathrm{3}} \sqrt{...}\:\:{and}\:{v}\:=−^{\mathrm{3}} \sqrt{....}\:\:\left(\:\:{uv}<\mathrm{0}\right)\:\Rightarrow \\ $$$${f}^{−\mathrm{1}} \left({x}\right)\:=^{\mathrm{3}} \sqrt{\frac{\mathrm{1}+{x}+\sqrt{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} \:+\frac{\mathrm{4}}{\mathrm{27}}}}{\mathrm{2}}}\:+^{\mathrm{3}} \sqrt{\frac{\mathrm{1}+{x}−\sqrt{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{27}}}}{\mathrm{2}}} \\ $$$$\Rightarrow{f}^{−\mathrm{1}} \left(−\mathrm{1}\right)\:=^{\mathrm{3}} \sqrt{\frac{\mathrm{1}}{\mathrm{27}}}−^{\mathrm{3}} \sqrt{\frac{\mathrm{1}}{\mathrm{27}}}\:=\mathrm{0} \\ $$$${f}^{−\mathrm{1}} \left(\mathrm{1}\right)\:=^{\mathrm{3}} \sqrt{\frac{\mathrm{2}+\sqrt{\mathrm{4}+\frac{\mathrm{4}}{\mathrm{27}}}}{\mathrm{2}}}\:+^{\mathrm{3}} \sqrt{\frac{\mathrm{2}−\sqrt{\mathrm{4}+\frac{\mathrm{4}}{\mathrm{27}}}}{\mathrm{2}}} \\ $$

Commented by Power last updated on 05/Apr/20

sir pls solution

$$\mathrm{sir}\:\mathrm{pls}\:\mathrm{solution} \\ $$

Commented by Power last updated on 05/Apr/20

Mjs  sir  5/4  correct answer

$$\mathrm{Mjs}\:\:\mathrm{sir}\:\:\mathrm{5}/\mathrm{4}\:\:\mathrm{correct}\:\mathrm{answer} \\ $$

Commented by mathmax by abdo last updated on 05/Apr/20

try to finish the answer sir...

$${try}\:{to}\:{finish}\:{the}\:{answer}\:{sir}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com