Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87585 by Power last updated on 05/Apr/20

Answered by redmiiuser last updated on 05/Apr/20

arcsin x+arccos x=(π/2)  arcsin x.arccos x=(π/2)arcsin x−(arcsin x)^2   arcsin x=t  dx=cos t.dt  x=sin t  ∫_0 ^(π/2) ((π/2)t−t^2 )cos t.dt  =(π/2)∫_0 ^(π/2) tcos t.dt−∫_0 ^(π/2) t^2 cos t.dt  =(π/2)[t∫_0 ^(π/2) cos t.dt−∫_(0 ) ^(π/2) {∫_0 ^(π/2) cos t.dt}.dt]−[∫_0 ^(π/2) cos t.dt−∫_0 ^(π/2) 2tsin t.dt]  =(π/2)[tsin t+cos t]_0 ^(π/2) −[t^2 sin t+2tcos t−2sin t]_0 ^(π/2)   =(π/2)[(π/2)−1]−[(π^2 /4)−2]  =2−(π/2)

$${arc}\mathrm{sin}\:{x}+\mathrm{arccos}\:{x}=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{arcsin}\:{x}.\mathrm{arccos}\:{x}=\frac{\pi}{\mathrm{2}}\mathrm{arcsin}\:{x}−\left(\mathrm{arcsin}\:{x}\right)^{\mathrm{2}} \\ $$$$\mathrm{arcsin}\:{x}={t} \\ $$$${dx}=\mathrm{cos}\:{t}.{dt} \\ $$$${x}=\mathrm{sin}\:{t} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\pi}{\mathrm{2}}{t}−{t}^{\mathrm{2}} \right)\mathrm{cos}\:{t}.{dt} \\ $$$$=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {t}\mathrm{cos}\:{t}.{dt}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {t}^{\mathrm{2}} \mathrm{cos}\:{t}.{dt} \\ $$$$=\frac{\pi}{\mathrm{2}}\left[{t}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\:{t}.{dt}−\int_{\mathrm{0}\:} ^{\frac{\pi}{\mathrm{2}}} \left\{\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\:{t}.{dt}\right\}.{dt}\right]−\left[\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\:{t}.{dt}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2}{t}\mathrm{sin}\:{t}.{dt}\right] \\ $$$$=\frac{\pi}{\mathrm{2}}\left[{t}\mathrm{sin}\:{t}+\mathrm{cos}\:{t}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\left[{t}^{\mathrm{2}} \mathrm{sin}\:{t}+\mathrm{2}{t}\mathrm{cos}\:{t}−\mathrm{2sin}\:{t}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\pi}{\mathrm{2}}\left[\frac{\pi}{\mathrm{2}}−\mathrm{1}\right]−\left[\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−\mathrm{2}\right] \\ $$$$=\mathrm{2}−\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$

Commented by Ar Brandon last updated on 05/Apr/20

nice method!

$${nice}\:{method}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com