Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 87648 by john santu last updated on 05/Apr/20

the sequence a_1 ,a_2 ,a_3 , ... satisfies  the relation a_(n+1)  = a_n +a_(n−1)  , for  n>1. given that a_(20)  = 6765 and  a_(18)  = 2584 what is a_(16)

thesequencea1,a2,a3,...satisfies therelationan+1=an+an1,for n>1.giventhata20=6765and a18=2584whatisa16

Commented byjohn santu last updated on 05/Apr/20

a_(20)  = a_(19)  + a_(18)   = a_(18) +a_(17) +a_(18)   = 3×a_(18) −a_(16)   ⇒a_(16)  = 3×a_(18) −a_(20)   ⇒a_(16)  = 3×2584−6765 = 987

a20=a19+a18 =a18+a17+a18 =3×a18a16 a16=3×a18a20 a16=3×25846765=987

Commented byjohn santu last updated on 05/Apr/20

so for this question   x^2 −x−1=0  x = ((1 ± (√5))/2)  a_n = A(((1+(√5))/2))^n +B(((1−(√5))/2))^n

soforthisquestion x2x1=0 x=1±52 an=A(1+52)n+B(152)n

Commented bymr W last updated on 05/Apr/20

yes

yes

Commented byjohn santu last updated on 05/Apr/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com