Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87692 by mind is power last updated on 05/Apr/20

sir Ma?h+t?que you have posted  ∫(dx/(((x+1)....(x+n))^2 ))=......can you reposted it please

$${sir}\:{Ma}?{h}+{t}?{que}\:{you}\:{have}\:{posted} \\ $$$$\int\frac{{dx}}{\left(\left({x}+\mathrm{1}\right)....\left({x}+{n}\right)\right)^{\mathrm{2}} }=......{can}\:{you}\:{reposted}\:{it}\:{please} \\ $$

Commented by M±th+et£s last updated on 05/Apr/20

Commented by M±th+et£s last updated on 05/Apr/20

you meaen this sir

$${you}\:{meaen}\:{this}\:{sir} \\ $$

Commented by mind is power last updated on 05/Apr/20

yeah thanx

$${yeah}\:{thanx} \\ $$

Commented by M±th+et£s last updated on 05/Apr/20

you are welcome sir . hope you find a solution

$${you}\:{are}\:{welcome}\:{sir}\:.\:{hope}\:{you}\:{find}\:{a}\:{solution} \\ $$

Commented by mind is power last updated on 05/Apr/20

i have an idea  (∂^n /(∂a_1 .....∂a_n )).(1/((x−a_1 ).......(x−a_n )))=(1/(Π_(k=1) ^n ((x−a_1 ).....(x−a_n ))^2 ))  i will post solution after i finish its  not so easy  for redaction

$${i}\:{have}\:{an}\:{idea} \\ $$$$\frac{\partial^{{n}} }{\partial{a}_{\mathrm{1}} .....\partial{a}_{{n}} }.\frac{\mathrm{1}}{\left({x}−{a}_{\mathrm{1}} \right).......\left({x}−{a}_{{n}} \right)}=\frac{\mathrm{1}}{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\left({x}−{a}_{\mathrm{1}} \right).....\left({x}−{a}_{{n}} \right)\right)^{\mathrm{2}} } \\ $$$${i}\:{will}\:{post}\:{solution}\:{after}\:{i}\:{finish}\:{its}\:\:{not}\:{so}\:{easy} \\ $$$${for}\:{redaction} \\ $$

Commented by mind is power last updated on 06/Apr/20

(1/((x−a_0 ).....(x−a_n )))=Σ_(k=0) ^n (1/(Π_(l=0,l≠k) ^n (a_k −a_l )(x−a_k )))=f(a_0 ,..a_n )  ((∂^(n+1) f(a_0 ,....,a_n ))/(∂a_0 ....∂a_n ))∣_((0,1,,n)) =(1/((x^2 ...(x−n)^2 ))   we can see that  (∂^(n+1) /(∂a_0 ...∂_a_n  ))((1/((x−a_0 ).....(x−a_n ))))=(1/((Π_(k=0) ^n (x−a_k ))^2 ))  ∂^(n+1) f(a_0 ,....a_n )=  =−Σ_(k=0) ^n .Σ_(j=0,j≠k) ^n (2/((a_k −a_j ).Π_(l=1,l≠k) ^n (a_k −a_l )^2 (x−a_k )))+Σ_(k=0) ^n (1/(Π_(l=0,l≠k) ^n (a_k −a_l )^2 (x−a_k )^2 ))  ∂^(n+1) f(0,1,.....,n)=  =−Σ_(k=0) ^n (2/(Π_(l=1,l#k) ^n (k−l)^2 )).Σ_(j=0,j≠k) ^n (1/(k−j)).(1/(x−a_k ))+Σ_(k=0) ^n (1/(Π_(l=0,l≠k) ^n (a_k −a_l )^2 (x−a_k )^2 ))  =−Σ_(k=0) ^n (2/(Π_(l=0,l≠k) ^n (k−l)^2 )).(H_k −H_(n−k) ).(1/((x−a_k )))+Σ_(k=0) ^n (1/(Π_(l=0,l#k) ^n (k−l)^2 (x−k)^2 ))  =Σ_(k=0) ^n ((2(n!)^2 (H_(n−k) −H_k ))/((k)^2 ...(1)....(n−k)^2 .(n!)^2 ))(1/((x−k)))+Σ_(k=0) ^n (((n!)^2 )/((n!)^2 (k...1...(n−k))^2 )).(1/(x−k))  =2Σ_(k=0) ^n (( ((n),(k) )^2 (H_(n−k) −H_k ))/((n!)^2 )).(1/(x−k))+(1/((n!)^2 ))Σ_(k=0) ^n .( ((n),(k) )^2 /((x−k)^2 ))  ∫∂^(n+1) f(0,...n)dx=∫(dx/(x^2 (x−1)^2 ...(x−n)^2 ))  =2Σ_(k=0) ^n (( ((n),(k) )^2 (H_(n−k) −H_k ))/((n!)^2 )).∫(1/(x−k))dx+(1/((n!)^2 ))Σ_(k=0) ^n ∫.( ((n),(k) )^2 /((x−k)^2 ))  (2/((n!)^2 ))Σ_(k=0) ^n  ((n),(k) )^2 (H_(n−k) −H_k )ln(x−k)+((Σ_(k=0) ^n  ((n),(k) ))/((n!)^2 )).(1/(k−x))  =(1/((n!)^2 ))Σ_(k=0) ^n ( ((n),(k) )^2 /(k−x))+ (2/((n!)^2 ))ln(Π_(k.=0) ^n (x−k)^((H_(n−k) −H_k ) ((n),(k) )^2 ) )+c          Σ

$$\frac{\mathrm{1}}{\left({x}−{a}_{\mathrm{0}} \right).....\left({x}−{a}_{{n}} \right)}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\underset{{l}=\mathrm{0},{l}\neq{k}} {\overset{{n}} {\prod}}\left({a}_{{k}} −{a}_{{l}} \right)\left({x}−{a}_{{k}} \right)}={f}\left({a}_{\mathrm{0}} ,..{a}_{{n}} \right) \\ $$$$\frac{\partial^{{n}+\mathrm{1}} {f}\left({a}_{\mathrm{0}} ,....,{a}_{{n}} \right)}{\partial{a}_{\mathrm{0}} ....\partial{a}_{{n}} }\mid_{\left(\mathrm{0},\mathrm{1},,{n}\right)} =\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} ...\left({x}−{n}\right)^{\mathrm{2}} \right.}\:\:\:{we}\:{can}\:{see}\:{that} \\ $$$$\frac{\partial^{{n}+\mathrm{1}} }{\partial{a}_{\mathrm{0}} ...\partial_{{a}_{{n}} } }\left(\frac{\mathrm{1}}{\left({x}−{a}_{\mathrm{0}} \right).....\left({x}−{a}_{{n}} \right)}\right)=\frac{\mathrm{1}}{\left(\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}\left({x}−{a}_{{k}} \right)\right)^{\mathrm{2}} } \\ $$$$\partial^{{n}+\mathrm{1}} {f}\left({a}_{\mathrm{0}} ,....{a}_{{n}} \right)= \\ $$$$=−\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}.\underset{{j}=\mathrm{0},{j}\neq{k}} {\overset{{n}} {\sum}}\frac{\mathrm{2}}{\left({a}_{{k}} −{a}_{{j}} \right).\underset{{l}=\mathrm{1},{l}\neq{k}} {\overset{{n}} {\prod}}\left({a}_{{k}} −{a}_{{l}} \right)^{\mathrm{2}} \left({x}−{a}_{{k}} \right)}+\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\underset{{l}=\mathrm{0},{l}\neq{k}} {\overset{{n}} {\prod}}\left({a}_{{k}} −{a}_{{l}} \right)^{\mathrm{2}} \left({x}−{a}_{{k}} \right)^{\mathrm{2}} } \\ $$$$\partial^{{n}+\mathrm{1}} {f}\left(\mathrm{0},\mathrm{1},.....,{n}\right)= \\ $$$$=−\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{2}}{\underset{{l}=\mathrm{1},{l}#{k}} {\overset{{n}} {\prod}}\left({k}−{l}\right)^{\mathrm{2}} }.\underset{{j}=\mathrm{0},{j}\neq{k}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}−{j}}.\frac{\mathrm{1}}{{x}−{a}_{{k}} }+\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\underset{{l}=\mathrm{0},{l}\neq{k}} {\overset{{n}} {\prod}}\left({a}_{{k}} −{a}_{{l}} \right)^{\mathrm{2}} \left({x}−{a}_{{k}} \right)^{\mathrm{2}} } \\ $$$$=−\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{2}}{\underset{{l}=\mathrm{0},{l}\neq{k}} {\overset{{n}} {\prod}}\left({k}−{l}\right)^{\mathrm{2}} }.\left({H}_{{k}} −{H}_{{n}−{k}} \right).\frac{\mathrm{1}}{\left({x}−{a}_{{k}} \right)}+\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\underset{{l}=\mathrm{0},{l}#{k}} {\overset{{n}} {\prod}}\left({k}−{l}\right)^{\mathrm{2}} \left({x}−{k}\right)^{\mathrm{2}} } \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{2}\left({n}!\right)^{\mathrm{2}} \left({H}_{{n}−{k}} −{H}_{{k}} \right)}{\left({k}\right)^{\mathrm{2}} ...\left(\mathrm{1}\right)....\left({n}−{k}\right)^{\mathrm{2}} .\left({n}!\right)^{\mathrm{2}} }\frac{\mathrm{1}}{\left({x}−{k}\right)}+\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\left({n}!\right)^{\mathrm{2}} }{\left({n}!\right)^{\mathrm{2}} \left({k}...\mathrm{1}...\left({n}−{k}\right)\right)^{\mathrm{2}} }.\frac{\mathrm{1}}{{x}−{k}} \\ $$$$=\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} \left({H}_{{n}−{k}} −{H}_{{k}} \right)}{\left({n}!\right)^{\mathrm{2}} }.\frac{\mathrm{1}}{{x}−{k}}+\frac{\mathrm{1}}{\left({n}!\right)^{\mathrm{2}} }\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}.\frac{\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} }{\left({x}−{k}\right)^{\mathrm{2}} } \\ $$$$\int\partial^{{n}+\mathrm{1}} {f}\left(\mathrm{0},...{n}\right){dx}=\int\frac{{dx}}{{x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)^{\mathrm{2}} ...\left({x}−{n}\right)^{\mathrm{2}} } \\ $$$$=\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} \left({H}_{{n}−{k}} −{H}_{{k}} \right)}{\left({n}!\right)^{\mathrm{2}} }.\int\frac{\mathrm{1}}{{x}−{k}}{dx}+\frac{\mathrm{1}}{\left({n}!\right)^{\mathrm{2}} }\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\int.\frac{\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} }{\left({x}−{k}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{2}}{\left({n}!\right)^{\mathrm{2}} }\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} \left({H}_{{n}−{k}} −{H}_{{k}} \right){ln}\left({x}−{k}\right)+\frac{\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}}{\left({n}!\right)^{\mathrm{2}} }.\frac{\mathrm{1}}{{k}−{x}} \\ $$$$=\frac{\mathrm{1}}{\left({n}!\right)^{\mathrm{2}} }\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} }{{k}−{x}}+\:\frac{\mathrm{2}}{\left({n}!\right)^{\mathrm{2}} }{ln}\left(\underset{{k}.=\mathrm{0}} {\overset{{n}} {\prod}}\left({x}−{k}\overset{\left({H}_{{n}−{k}} −{H}_{{k}} \right)\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} } {\right)}\right)+{c} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\Sigma \\ $$

Commented by M±th+et£s last updated on 06/Apr/20

i am speechless sir . god bless you

$${i}\:{am}\:{speechless}\:{sir}\:.\:{god}\:{bless}\:{you} \\ $$

Commented by mind is power last updated on 06/Apr/20

withe pleasur sir ,gold bless You too  if you csn reposte somme unswerd Quation may  bee i will see  somes ideas

$${withe}\:{pleasur}\:{sir}\:,{gold}\:{bless}\:{You}\:{too} \\ $$$${if}\:{you}\:{csn}\:{reposte}\:{somme}\:{unswerd}\:{Quation}\:{may} \\ $$$${bee}\:{i}\:{will}\:{see}\:\:{somes}\:{ideas} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com