Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87716 by Power last updated on 05/Apr/20

Commented by malwaan last updated on 05/Apr/20

put x=2sin y ⇒ dx=2cosydy  3x−x^3  = 2sin3y  ∴ ∫^3 (√(2sin3y)) . 2cosy dy = ??

$${put}\:{x}=\mathrm{2}{sin}\:{y}\:\Rightarrow\:{dx}=\mathrm{2}{cosydy} \\ $$$$\mathrm{3}{x}−{x}^{\mathrm{3}} \:=\:\mathrm{2}{sin}\mathrm{3}{y} \\ $$$$\therefore\:\int\:^{\mathrm{3}} \sqrt{\mathrm{2}{sin}\mathrm{3}{y}}\:.\:\mathrm{2}{cosy}\:{dy}\:=\:?? \\ $$

Answered by MJS last updated on 06/Apr/20

∫(3x−x^3 )^(1/3) dx=−∫x^(1/3) (x^2 −3)^(1/3) dx=       [t=(x^(2/3) /((x^2 −3)^(1/3) )) ⇔ x=(((√3)t^(3/2) )/((t^3 −1)^(1/2) )) → dx=−(1/2)x^(1/3) (x^2 −3)^(4/3) dt]  =(9/2)∫(t/((t^3 −1)^2 ))dt=       [Ostrogradski, like I have shown before]  =−((3t^2 )/(2(t^3 −1)))−(3/2)∫(t/(t^3 −1))dt         ∫(t/(t^3 −1))dt=−(1/3)∫((t−1)/(t^2 +t+1))dt+(1/3)∫(dt/(t−1))=       =−(1/6)ln (t^2 +t+1) +((√3)/3)arctan (((√3)(2t+1))/3) +(1/3)ln (t−1) =       =(1/6)ln (((t−1)^2 )/(t^2 +t+1)) +((√3)/3)arctan (((√3)(2t+1))/3)    =−((3t^2 )/(2(t^3 −1)))+(1/4)ln ((t^2 +t+1)/((t−1)^2 )) −((√3)/2)arctan (((√3)(2t+1))/3)  now insert t=(x^(2/3) /((x^2 −3)^(1/3) ))

$$\int\left(\mathrm{3}{x}−{x}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} {dx}=−\int{x}^{\mathrm{1}/\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{3}\right)^{\mathrm{1}/\mathrm{3}} {dx}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}^{\mathrm{2}/\mathrm{3}} }{\left({x}^{\mathrm{2}} −\mathrm{3}\right)^{\mathrm{1}/\mathrm{3}} }\:\Leftrightarrow\:{x}=\frac{\sqrt{\mathrm{3}}{t}^{\mathrm{3}/\mathrm{2}} }{\left({t}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} }\:\rightarrow\:{dx}=−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{1}/\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{3}\right)^{\mathrm{4}/\mathrm{3}} {dt}\right] \\ $$$$=\frac{\mathrm{9}}{\mathrm{2}}\int\frac{{t}}{\left({t}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{2}} }{dt}= \\ $$$$\:\:\:\:\:\left[\mathrm{Ostrogradski},\:\mathrm{like}\:\mathrm{I}\:\mathrm{have}\:\mathrm{shown}\:\mathrm{before}\right] \\ $$$$=−\frac{\mathrm{3}{t}^{\mathrm{2}} }{\mathrm{2}\left({t}^{\mathrm{3}} −\mathrm{1}\right)}−\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{t}}{{t}^{\mathrm{3}} −\mathrm{1}}{dt} \\ $$$$ \\ $$$$\:\:\:\:\:\int\frac{{t}}{{t}^{\mathrm{3}} −\mathrm{1}}{dt}=−\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{t}−\mathrm{1}}{{t}^{\mathrm{2}} +{t}+\mathrm{1}}{dt}+\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{dt}}{{t}−\mathrm{1}}= \\ $$$$\:\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)\:+\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{t}+\mathrm{1}\right)}{\mathrm{3}}\:+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\left({t}−\mathrm{1}\right)\:= \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\frac{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{{t}^{\mathrm{2}} +{t}+\mathrm{1}}\:+\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{t}+\mathrm{1}\right)}{\mathrm{3}} \\ $$$$ \\ $$$$=−\frac{\mathrm{3}{t}^{\mathrm{2}} }{\mathrm{2}\left({t}^{\mathrm{3}} −\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\frac{{t}^{\mathrm{2}} +{t}+\mathrm{1}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }\:−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{t}+\mathrm{1}\right)}{\mathrm{3}} \\ $$$$\mathrm{now}\:\mathrm{insert}\:{t}=\frac{{x}^{\mathrm{2}/\mathrm{3}} }{\left({x}^{\mathrm{2}} −\mathrm{3}\right)^{\mathrm{1}/\mathrm{3}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com