Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87815 by jagoll last updated on 06/Apr/20

I = ∫_0 ^(π/2)  cos 2x(cos^4 x+sin^4 x) dx

I=π20cos2x(cos4x+sin4x)dx

Commented by john santu last updated on 06/Apr/20

cos^4 x+sin^4 x = (cos^2 x+sin^2 x)^2 −2cos^2 xsin^2 x  = 1 − (1/2)sin^2 (2x)  I=∫(1/2) cos 2x (2−sin^2 (2x))dx  [let t = sin 2x ⇒ dt = 2cos 2x dx]  I = (1/4)∫ (2−t^2 ) dt  I = (1/4)[ 2t −(1/3)t^3 ]   now I = (1/4)[ 2sin 2x−(1/3)sin^3 2x ]_0 ^(π/2)   I = 0

cos4x+sin4x=(cos2x+sin2x)22cos2xsin2x=112sin2(2x)I=12cos2x(2sin2(2x))dx[lett=sin2xdt=2cos2xdx]I=14(2t2)dtI=14[2t13t3]nowI=14[2sin2x13sin32x]0π2I=0

Commented by jagoll last updated on 06/Apr/20

thank sir

thanksir

Commented by mathmax by abdo last updated on 06/Apr/20

I =∫_0 ^(π/2) cos(2x)(cos^4 x +sin^4 x)dx  changement x =(π/2)−t give  I =−∫_0 ^(π/2)  cos(π−2t){sin^4 t +cos^4 t)(−dt)  =−∫_0 ^(π/2)  cos(2t){cos^4 t +sin^4 t}dt =−I ⇒2I=0 ⇒I =0

I=0π2cos(2x)(cos4x+sin4x)dxchangementx=π2tgiveI=0π2cos(π2t){sin4t+cos4t)(dt)=0π2cos(2t){cos4t+sin4t}dt=I2I=0I=0

Answered by redmiiuser last updated on 06/Apr/20

sin^4 x+cos^4 x  =(sin^2 x+cos^2 x)^2 −2sin^2 x.cos^2 x  =1−2.(((sin 2x)^2 )/4)  =1−((1−cos 4x)/4)  =((3+cos 4x)/4)  ∫_0 ^(π/2) ((3/4)cos 2x.dx+(1/4)cos 2x.cos 4x.dx)  =(3/8)[sin 2x]_0 ^(π/2) +(1/8)[((sin 6x)/6)]_0 ^(π/2) +(1/8)[((sin 2x)/2)]_0 ^(π/2)   =0

sin4x+cos4x=(sin2x+cos2x)22sin2x.cos2x=12.(sin2x)24=11cos4x4=3+cos4x40π2(34cos2x.dx+14cos2x.cos4x.dx)=38[sin2x]0π2+18[sin6x6]0π2+18[sin2x2]0π2=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com