Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87839 by jagoll last updated on 06/Apr/20

I = ∫_0 ^(π/4)  ((sin 4x)/(cos^2 x (√(tan^4 x+1)))) dx

I=π40sin4xcos2xtan4x+1dx

Answered by redmiiuser last updated on 06/Apr/20

(√(tan^4 x+1))  =(√(sin^4 x+cos^4 x))/cos^2 x  ((sin 4x)/(√(sin^4 x+cos^4 x)))  =((sin 4x)/(√((3+cos 4x)/4)))  ∫_0 ^(π/4) ((2sin 4x)/(√(3+cos 4x)))dx  3+cos 4x=z  dz=4.sin 4x.dx  ∫_4 ^2 ((2.dz)/(4.(√z)))  =(1/2)∫_4 ^2 (dz/(√z))  =[(√z)]_4 ^2   =(√2)−2

tan4x+1=sin4x+cos4x/cos2xsin4xsin4x+cos4x=sin4x3+cos4x40π42sin4x3+cos4xdx3+cos4x=zdz=4.sin4x.dx422.dz4.z=1242dzz=[z]42=22

Commented by jagoll last updated on 06/Apr/20

yes sir. thank you

yessir.thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com