All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 87854 by jagoll last updated on 06/Apr/20
∫1sinx+2cosx+3dx
Commented by mathmax by abdo last updated on 06/Apr/20
I=∫dx2cosx+sinx+3wedothechangementtan(x2)=t⇒I=∫2dt(1+t2)(21−t21+t2+2t1+t2+3)=∫2dt2−2t2+2t+3+3t2=∫2dt5+2t+t2=2∫dtt2+2t+5=2∫dt(t+1)2+4=t+1=2u2∫2du4(1+u2)=arctan(t+12)+C=arctan(12(1+tan(x2))+C
Commented by john santu last updated on 07/Apr/20
letx=2arctant⇒dx=2dt1+t2∫2dt(1+t2)(2t1+t2+2−2t21+t2+3)∫2dtt2+2t+5=∫2dt(t+1)2+412∫d(t+1)1+(t+12)2=∫d(t+12)1+(t+12)2=arctan(t+12)+c=arctan(tan(x2)+12)+c
Commented by jagoll last updated on 06/Apr/20
waw...thanksall
Terms of Service
Privacy Policy
Contact: info@tinkutara.com