All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 87969 by M±th+et£s last updated on 07/Apr/20
Answered by mind is power last updated on 07/Apr/20
=∑k⩾1∫k2k+12x−⌊x][2x]2dx=S+∑k⩾1∫2k+12k+1x−[x][x]2dx=TS=∑k⩾1∫k2k+12x−k4k2dx=∑k⩾116k2[(12)32]=∑k⩾1112k22=π2722T=∑k⩾1∫2k+12k+1x−[x][2x]2dx=∑k⩾1∫2k+12k+1x−[k](2k+1)2dx=∑k⩾123(2k+1)2[1−(12)32]=−∑k⩾1132(2k+1)2+∑k⩾123(2k+1)2=∑k⩾01(2k+1)2=34ζ(2)=π28T=(−132+23)π28−23(1−122)S+T=π2722−π2242+2π224−23+132=−2π2+6π272+122−4872=π2(6−2)+12(2−4)72
Commented by M±th+et£s last updated on 07/Apr/20
nicesolutionthanxsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com