Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87969 by M±th+et£s last updated on 07/Apr/20

Answered by mind is power last updated on 07/Apr/20

=Σ_(k≥1) ∫_k ^((2k+1)/2) ((√(x−⌊x]))/([2x]^2 ))dx_(=S) +Σ_(k≥1) ∫_((2k+1)/2) ^(k+1) ((√(x−[x]))/([x]^2 ))dx_(=T)   S=Σ_(k≥1) ∫_k ^((2k+1)/2) ((√(x−k))/(4k^2 ))dx=Σ_(k≥1) (1/(6k^2 ))[((1/2))^(3/2) ]=Σ_(k≥1) (1/(12k^2 (√2)))=(π^2 /(72(√2)))  T=Σ_(k≥1) ∫_((2k+1)/2) ^(k+1) ((√(x−[x]))/([2x]^2 ))dx=Σ_(k≥1) ∫_((2k+1)/2) ^(k+1) ((√(x−[k]))/((2k+1)^2 ))dx  =Σ_(k≥1) (2/(3(2k+1)^2 ))[1−((1/2))^(3/2) ]=−Σ_(k≥1) (1/(3(√2)(2k+1)^2 ))+Σ_(k≥1) (2/(3(2k+1)^2 ))  =Σ_(k≥0) (1/((2k+1)^2 ))=(3/4)ζ(2)=(π^2 /8)  T=(−(1/(3(√2)))+(2/3))(π^2 /8)−(2/3)(1−(1/(2(√2))))  S+T=(π^2 /(72(√2)))−(π^2 /(24(√2)))+((2π^2 )/(24))−(2/3)+(1/(3(√2)))  =((−(√2)π^2 +6π^2 )/(72))+((12(√2)−48)/(72))=((π^2 (6−(√2))+12((√2)−4))/(72))

=k1k2k+12xx][2x]2dx=S+k12k+12k+1x[x][x]2dx=TS=k1k2k+12xk4k2dx=k116k2[(12)32]=k1112k22=π2722T=k12k+12k+1x[x][2x]2dx=k12k+12k+1x[k](2k+1)2dx=k123(2k+1)2[1(12)32]=k1132(2k+1)2+k123(2k+1)2=k01(2k+1)2=34ζ(2)=π28T=(132+23)π2823(1122)S+T=π2722π2242+2π22423+132=2π2+6π272+1224872=π2(62)+12(24)72

Commented by M±th+et£s last updated on 07/Apr/20

nice solution thanx sir

nicesolutionthanxsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com