Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87977 by Ar Brandon last updated on 07/Apr/20

∫_(−(π/2)) ^(π/2) ((sin 2x)/(1+2^x ))dx

π2π2sin2x1+2xdx

Commented by abdomathmax last updated on 08/Apr/20

at form of serie  ∫_(−(π/2)) ^(π/2)  ((sin(2x))/(1+2^x ))dx =∫_(−(π/2)) ^(π/2)  ((2^(−x) sin(2x))/(1+2^(−x) ))dx  =∫_(−(π/2)) ^(π/2)  2^(−x) sin(2x)Σ_(n=0) ^∞  (−1)^n  2^(−nx)  dx  =Σ_(n=0) ^∞ (−1)^n  ∫_(−(π/2)) ^(π/2)  2^(−(n+1)x)  sin(2x)dx  but ∫_(−(π/2)) ^(π/2)  2^(−(n+1)x)  sin(2x)dx  =Im(∫_(−(π/2)) ^(π/2)  2^(−(n+1)x)  e^(2ix)  dx)  ∫_(−(π/2)) ^(π/2)  e^(−(n+1)xln2 +2ix)  dx  =∫_(−(π/2)) ^(π/2)  e^((2i−(n+1)ln2)x)  dx  =[(1/(2i−(n+1)ln2)) e^((2i−(n+1)ln2)x) ]_(−(π/2)) ^(π/2)   =(1/(2i−(n+1)ln2)){ −e^(−(n+1)ln2(π/2)) −e^((n+1)ln2(π/2)) }  =(((n+1)ln2−2i)/((n+1)^2 ln^2 2+4)){ e^((π/2)(n+1)ln2)  +e^(−(π/2)(n+1)ln2) } ⇒  Im(...) =−(2/((n+1)^2 ln^2 2+4)) ×2 ch((π/2)(n+1)ln2) ⇒  ⇒  I =4Σ_(n=0) ^∞   (((−1)^(n+1) )/((n+1)^2 ln^2 2 +4))×ch((π/2)(n+1)ln2)

atformofserieπ2π2sin(2x)1+2xdx=π2π22xsin(2x)1+2xdx=π2π22xsin(2x)n=0(1)n2nxdx=n=0(1)nπ2π22(n+1)xsin(2x)dxbutπ2π22(n+1)xsin(2x)dx=Im(π2π22(n+1)xe2ixdx)π2π2e(n+1)xln2+2ixdx=π2π2e(2i(n+1)ln2)xdx=[12i(n+1)ln2e(2i(n+1)ln2)x]π2π2=12i(n+1)ln2{e(n+1)ln2π2e(n+1)ln2π2}=(n+1)ln22i(n+1)2ln22+4{eπ2(n+1)ln2+eπ2(n+1)ln2}Im(...)=2(n+1)2ln22+4×2ch(π2(n+1)ln2)I=4n=0(1)n+1(n+1)2ln22+4×ch(π2(n+1)ln2)

Commented by Ar Brandon last updated on 08/Apr/20

Amazing!!!!!

Amazing!!!!!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com