All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 87977 by Ar Brandon last updated on 07/Apr/20
∫−π2π2sin2x1+2xdx
Commented by abdomathmax last updated on 08/Apr/20
atformofserie∫−π2π2sin(2x)1+2xdx=∫−π2π22−xsin(2x)1+2−xdx=∫−π2π22−xsin(2x)∑n=0∞(−1)n2−nxdx=∑n=0∞(−1)n∫−π2π22−(n+1)xsin(2x)dxbut∫−π2π22−(n+1)xsin(2x)dx=Im(∫−π2π22−(n+1)xe2ixdx)∫−π2π2e−(n+1)xln2+2ixdx=∫−π2π2e(2i−(n+1)ln2)xdx=[12i−(n+1)ln2e(2i−(n+1)ln2)x]−π2π2=12i−(n+1)ln2{−e−(n+1)ln2π2−e(n+1)ln2π2}=(n+1)ln2−2i(n+1)2ln22+4{eπ2(n+1)ln2+e−π2(n+1)ln2}⇒Im(...)=−2(n+1)2ln22+4×2ch(π2(n+1)ln2)⇒⇒I=4∑n=0∞(−1)n+1(n+1)2ln22+4×ch(π2(n+1)ln2)
Commented by Ar Brandon last updated on 08/Apr/20
Amazing!!!!!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com