Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88010 by Chi Mes Try last updated on 07/Apr/20

∫((x^2 +2x+3)/(√(x^2 +x+1)))dx

x2+2x+3x2+x+1dx

Commented by niroj last updated on 07/Apr/20

   ∫((x^2 +2x+3)/(√(x^2 +x+1)))dx  = ∫ ((x^2 +x+1+x+2)/(√(x^2 +x+1)))dx  = ∫ ((x^2 +x+1)/(√(x^2 +x+1)))dx+ ∫(( x+2)/(√(x^2 +x+1)))dx     = ∫(√(x^2 +x+1))  dx+ ∫ (((1/2)(2x+1)+(3/2))/(√(x^2 +x+1)))dx    = ∫(√(x^2 +2x.(1/2)+(1/4)−(1/4)+))1 dx +  (1/2)∫ (((2x+1))/(√(x^2 +x+1)))dx+(3/2)∫(( 1)/(√((x+(1/2))^2 +(3/2))))dx  = ∫(√((x+(1/2))^2 +(3/4)))  dx +(1/2).2(√(x^2 +x+1))+C+  (3/2)∫ ((  1)/(√( (x+(1/2))^2 + (((√3)/2))^2 )))dx   = ∫(√((x+(1/2))^2 +(((√3)/2))^2 ))dx + (3/2)∫(1/(√((x+(1/2))^2 +(((√3)/2))^2 )))dx +(√(x^2 +x+1))  +C  =  (((2x+1)(√(x^2 +x+1)))/4)+ (3/8)log (x+(1/2)+(√(x^2 +x+1)) )+ (3/2)log (x+(1/2)+(√(x^2 +x+1)) ) +(√(x^2 +x+1))  +C  //.

x2+2x+3x2+x+1dx=x2+x+1+x+2x2+x+1dx=x2+x+1x2+x+1dx+x+2x2+x+1dx=x2+x+1dx+12(2x+1)+32x2+x+1dx=x2+2x.12+1414+1dx+12(2x+1)x2+x+1dx+321(x+12)2+32dx=(x+12)2+34dx+12.2x2+x+1+C+321(x+12)2+(32)2dx=(x+12)2+(32)2dx+321(x+12)2+(32)2dx+x2+x+1+C=(2x+1)x2+x+14+38log(x+12+x2+x+1)+32log(x+12+x2+x+1)+x2+x+1+C//.

Commented by mathmax by abdo last updated on 08/Apr/20

A =∫  ((x^2  +2x+3)/(√(x^2  +x+1)))dx ⇒A =∫ ((x^2  +2)/(√(x^2  +x+1)))dx +∫ ((2x+1)/(√(x^2  +x+1)))dx  we have ∫ ((2x+1)/(√(x^2  +x+1)))dx =2(√(x^2  +x+1)) +c_1   ∫ ((x^2  +2)/(√(x^2 +x+1)))dx =∫ ((x^2  +2)/(√((x+(1/2))^2  +(3/4))))dx =_(x+(1/2)=((√3)/2)sh(t))   =∫   (((((√3)/2)sh(t)−(1/2))^2  +2)/(((√3)/2)ch(t)))×((√3)/2)ch(t)dt  =(1/4)∫(  ((√3)sh(t)−1)^2  +8) dt = 2t  +(1/4)∫(3sh^2 t−2(√3)sh(t)+1)dt  =2t +(3/8)∫(ch(2t)−1)dt −((√3)/2)ch(t) +(t/4)  =(9/4)t +(3/(16))sh(2t)−((3t)/8)−((√3)/3)ch(t)+C_2   =((15)/8) t  +(3/8)sh(t)ch(t) −((√3)/3)ch(t) +c_2   =((15)/8)argsh(((2x+1)/(√3))) +(3/8)(((2x+1)/(√3)))(√(1+(((2x+1)/(√3)))^2 )) −((√3)/3)(√(1+(((2x+1)/(√3)))^2 )) +C_2   ⇒ A =2(√(x^2  +x+1))  +((15)/8)ln(((2x+1)/(√3))+(√(1+(((2x+1)/(√3)))^2 ))  +(3/8)(((2x+1)/(√3)))(√(1+(((2x+1)/(√3)))^2 ))−((√3)/3)(√(1+(((2x+1)/(√3)))^2 )) +C

A=x2+2x+3x2+x+1dxA=x2+2x2+x+1dx+2x+1x2+x+1dxwehave2x+1x2+x+1dx=2x2+x+1+c1x2+2x2+x+1dx=x2+2(x+12)2+34dx=x+12=32sh(t)=(32sh(t)12)2+232ch(t)×32ch(t)dt=14((3sh(t)1)2+8)dt=2t+14(3sh2t23sh(t)+1)dt=2t+38(ch(2t)1)dt32ch(t)+t4=94t+316sh(2t)3t833ch(t)+C2=158t+38sh(t)ch(t)33ch(t)+c2=158argsh(2x+13)+38(2x+13)1+(2x+13)2331+(2x+13)2+C2A=2x2+x+1+158ln(2x+13+1+(2x+13)2+38(2x+13)1+(2x+13)2331+(2x+13)2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com