Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 88032 by mathmax by abdo last updated on 07/Apr/20

decompose inside R(x) the fraction  1) F(x) =(1/(x^3 (x−2)^3 ))  2) F(x) =(1/((x+1)^4 (x−3)^4 ))

decomposeinsideR(x)thefraction1)F(x)=1x3(x2)32)F(x)=1(x+1)4(x3)4

Commented by jagoll last updated on 08/Apr/20

what is R(x)? remainder?

whatisR(x)?remainder?

Commented by abdomathmax last updated on 10/Apr/20

space of rational fractions

spaceofrationalfractions

Commented by abdomathmax last updated on 10/Apr/20

1)F(x) =(1/8)(((x−(x−2))^3 )/(x^3 (x−2)^3 )) ⇒  8F(x)?=((x^3  −3x^2 (x−2) +3x(x−2)^2  −(x−2)^3 )/(x^3 (x−2)^3 ))  =((x^3  +3x(x−2)(−x+x−2) −(x−2)^3 )/(x^3 (x−2)^3 ))  =((x^3  −6x(x−2)−(x−2)^3 )/(x^3 (x−2)^3 ))  =(1/((x−2)^3 )) −(6/(x^2 (x−2)^2 ))−(1/x^3 )  =(1/((x−2)^3 ))−(1/x^3 ) −(3/2){(((x−(x−2))^2 )/(x^2 (x−2)^2 ))}  =(1/((x−2)^3 ))−(1/x^3 )−(3/2){ ((x^2 −2x(x−2) +(x−2)^2 )/(x^2 (x−2)^2 ))}  =(1/((x−2)^3 ))−(1/x^3 )−(3/(2(x−2)^2 )) +(6/(x(x−2))) +(3/(2x^2 ))  =(1/((x−2)^3 ))−(1/x^3 )−(3/(2(x−2)^2 )) −3((1/x)−(1/(x−2))) +(3/(2x^2 ))  =−(3/x) +(3/(x−2)) +(3/(2x^2 ))−(3/(2(x−2)^2 ))−(1/x^3 ) +(1/((x−2)^3 )) =8F(x)

1)F(x)=18(x(x2))3x3(x2)38F(x)?=x33x2(x2)+3x(x2)2(x2)3x3(x2)3=x3+3x(x2)(x+x2)(x2)3x3(x2)3=x36x(x2)(x2)3x3(x2)3=1(x2)36x2(x2)21x3=1(x2)31x332{(x(x2))2x2(x2)2}=1(x2)31x332{x22x(x2)+(x2)2x2(x2)2}=1(x2)31x332(x2)2+6x(x2)+32x2=1(x2)31x332(x2)23(1x1x2)+32x2=3x+3x2+32x232(x2)21x3+1(x2)3=8F(x)

Commented by mathmax by abdo last updated on 10/Apr/20

error of calculus  8F(x)=(1/((x−2)^3 ))−(1/x^3 )−(3/(2(x−2)^2 )) +(3/(x(x−2)))−(3/(2x^2 ))  =(1/((x−2)^3 ))−(1/x^3 )−(3/(2(x−2)^2 )) −(3/2)((1/x)−(1/(x−2)))−(3/(2x^2 ))  F(x)=(1/8){(1/((x−2)^3 ))−(1/x^3 )−(3/(2(x−2)^2 ))−(3/(2x)) +(3/(2(x−2)))−(3/(2x^2 ))}

errorofcalculus8F(x)=1(x2)31x332(x2)2+3x(x2)32x2=1(x2)31x332(x2)232(1x1x2)32x2F(x)=18{1(x2)31x332(x2)232x+32(x2)32x2}

Commented by mathmax by abdo last updated on 10/Apr/20

2)F(x)=(1/4^4 )(({(x+1)−(x−3)}^4 )/((x+1)^4 (x−3)^4 ))  ⇒4^4  F(x)=(({(x+1)^2 −2(x+1)(x−3)+(x−3)^2 }^2 )/((x+1)^4 (x−3)^4 ))  we use the identity (a+b+c)^2 =a^2  +b^2  +c^2  +2(ab +bc +ca) ⇒  4^4  F(x)=(((x+1)^4  +4(x+1)^2 (x−3)^2  +(x−3)^4  +2{ −2(x+1)^3 (x−3)+(x+1)^2 (x−3)^2 −2(x+1)(x−3)^3 })/((x+1)^4 (x−3)^4 ))  =(1/((x−3)^4 )) +(4/((x+1)^2 (x−3)^2 )) +(1/((x+1)^4 )) −(4/((x+1)(x−3)^3 )) +(2/((x+1)^2 (x−3)^2 ))−(4/((x+1)^3 (x−3)))  also we have (4/((x+1)^2 (x−3)^2 )) =(1/4){((((x+1)−(x−3))^2 )/((x+1)^2 (x−3)^2 ))}  =(1/4){(((x+1)^2 −2(x+1)(x−3) +(x−3)^2 )/((x+1)^2 (x−3)^2 ))}  =(1/4){ (1/((x−3)^2 )) −(2/((x+1)(x−3))) +(1/((x+1)^2 ))}  =(1/(4(x−3)^2 ))+(1/8)((1/(x+1))−(1/(x−3)))+(1/(4(x+1)^2 ))  =(1/(4(x−3)^2 )) +(1/(8(x+1)))−(1/(8(x−3)))+(1/(4(x+1)^2 ))  −(4/((x+1)(x−3)^3 ))−(4/((x+1)^3 (x−3))) =−(4/((x+1)(x−3)))((1/((x−3)^2 ))+(1/((x+1)^2 )))  =((1/(x+1))−(1/(x−3)))((1/((x−3)^2 ))+(1/((x+1)^2 )))  =(1/((x+1)(x−3)^2 )) +(1/((x+1)^3 ))−(1/((x−3)^3 ))−(1/((x−3)(x+1)^2 ))  =(1/((x+1)(x−3))){(1/(x−3))−(1/(x+1))}+(1/((x+1)^3 ))−(1/((x−3)^3 ))  =−(1/4)((1/(x+1))−(1/(x−3)))((1/(x−3))−(1/(x+1)))+(1/((x+1)^3 ))−(1/((x−3)^3 ))  =−(1/4)((1/((x+1)(x−3)))−(1/((x+1)^2 ))−(1/((x−3)^2 ))+(1/((x−3)(x+1))))+(1/((x+1)^3 ))−(1/((x−3)^3 ))  ....

2)F(x)=144{(x+1)(x3)}4(x+1)4(x3)444F(x)={(x+1)22(x+1)(x3)+(x3)2}2(x+1)4(x3)4weusetheidentity(a+b+c)2=a2+b2+c2+2(ab+bc+ca)44F(x)=(x+1)4+4(x+1)2(x3)2+(x3)4+2{2(x+1)3(x3)+(x+1)2(x3)22(x+1)(x3)3}(x+1)4(x3)4=1(x3)4+4(x+1)2(x3)2+1(x+1)44(x+1)(x3)3+2(x+1)2(x3)24(x+1)3(x3)alsowehave4(x+1)2(x3)2=14{((x+1)(x3))2(x+1)2(x3)2}=14{(x+1)22(x+1)(x3)+(x3)2(x+1)2(x3)2}=14{1(x3)22(x+1)(x3)+1(x+1)2}=14(x3)2+18(1x+11x3)+14(x+1)2=14(x3)2+18(x+1)18(x3)+14(x+1)24(x+1)(x3)34(x+1)3(x3)=4(x+1)(x3)(1(x3)2+1(x+1)2)=(1x+11x3)(1(x3)2+1(x+1)2)=1(x+1)(x3)2+1(x+1)31(x3)31(x3)(x+1)2=1(x+1)(x3){1x31x+1}+1(x+1)31(x3)3=14(1x+11x3)(1x31x+1)+1(x+1)31(x3)3=14(1(x+1)(x3)1(x+1)21(x3)2+1(x3)(x+1))+1(x+1)31(x3)3....

Commented by abdomathmax last updated on 10/Apr/20

1) another way  we detemine D_2 f(0) with  f(x)=(1/((x−2)^3 )) ⇒f(x)=f(0) +(x/(1!))f^((1)) (0)+(x^2 /(2!))f^((2)) (0)  +x^3 ξ(x)  f(0)=−(1/8)  f(x)=(x−2)^(−3)  ⇒f^′ (x)=−3(x−2)^(−4)  ⇒  f^′ (0)=−3(−2)^(−4)  =((−3)/2^4 ) =−(3/(16))  f^((2)) (0) =12(x−2)^(−5)  ⇒f^((2)) (0) =((12)/((−2)^5 )) =−((12)/2^5 )  =−((12)/(32)) =−(3/8)  decomposition of F is  F(x)=Σ_(i=1) ^3  (a_i /x^i ) +Σ_(i=1) ^3  (b_i /((x−2)^i ))  we have  F(x)=(1/x^3 )(−(1/8)−(3/(16))x−(3/(16))x^2  +x^3 ξ(x))  =−(1/(8x^3 ))−(3/(16x^2 ))−(3/(16x)) +ξ(x) ⇒a_1 =−(3/(16))  a_2 =−(3/(16))  and a_3 =−(1/8)  let find the b_i  we do the  changement x−2 =t ⇒  F(x)=(1/(t^3 (t+2)^3 ))  and find D_2 (0) for g(t)=(t+2)^(−3)   g(t)=g(0)+t g^′ (0) +(t^2 /2)g^((2)) (0) +t^3 δ(x)  g(0)=(1/8)  ,   g^′ (t)=−3(t+2)^(−4)  ⇒g^′ (0)=((−3)/(16))  g^((2)) (0) =12(t+2)^(−5)  ⇒g^((2)) (0)=((12)/2^5 ) =((12)/(32)) =(3/8)  F(x)=(1/t^3 ){(1/8)−(3/(16))t +(3/(16))t^2  +t^3 δ(t)}  =(1/(8t^3 )) −(3/(16t^2 )) +(3/(16t)) +δ(t)  =(1/(8(x−2)^3 ))−(3/(16(x−2)^2 ))+(3/(16(x−2))) +δ(t) ⇒  b_1 =(3/(16)) , b_2 =−(3/(26))  and b_3 =(1/8)  tbe coefficients are found

1)anotherwaywedetemineD2f(0)withf(x)=1(x2)3f(x)=f(0)+x1!f(1)(0)+x22!f(2)(0)+x3ξ(x)f(0)=18f(x)=(x2)3f(x)=3(x2)4f(0)=3(2)4=324=316f(2)(0)=12(x2)5f(2)(0)=12(2)5=1225=1232=38decompositionofFisF(x)=i=13aixi+i=13bi(x2)iwehaveF(x)=1x3(18316x316x2+x3ξ(x))=18x3316x2316x+ξ(x)a1=316a2=316anda3=18letfindthebiwedothechangementx2=tF(x)=1t3(t+2)3andfindD2(0)forg(t)=(t+2)3g(t)=g(0)+tg(0)+t22g(2)(0)+t3δ(x)g(0)=18,g(t)=3(t+2)4g(0)=316g(2)(0)=12(t+2)5g(2)(0)=1225=1232=38F(x)=1t3{18316t+316t2+t3δ(t)}=18t3316t2+316t+δ(t)=18(x2)3316(x2)2+316(x2)+δ(t)b1=316,b2=326andb3=18tbecoefficientsarefound

Commented by abdomathmax last updated on 10/Apr/20

b_2 =−(3/(16))

b2=316

Terms of Service

Privacy Policy

Contact: info@tinkutara.com