Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88033 by M±th+et£s last updated on 07/Apr/20

find ∫_0 ^1 ((sin(x))/x)dx

find01sin(x)xdx

Commented by mathmax by abdo last updated on 08/Apr/20

approximate value we have sinx =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!))x^(2n+1)   ⇒  sinx =x−(x^3 /(3!)) +o(x^3 ) ⇒ ∀ x∈[0,1]     x−(x^3 /6)≤sinx ≤x ⇒  1−(x^2 /6)≤((sinx)/x)≤1 ⇒∫_0 ^1 (1−(x^2 /6))dx ≤ ∫_0 ^1  ((sinx)/x)dx ≤1  we have ∫_0 ^1 (1−(x^2 /6))dx =[x−(1/(18))x^3 ]_0 ^1 =1−(1/(18)) =((17)/(18)) ⇒  ((17)/(18))≤ ∫_0 ^1  ((sinx)/x)dx ≤1  we can take v_0 =(1/2) +((17)/(46))  as a apprimate  value for this integral  I ∼0,5 +0,369 ⇒ I ∼0,869

approximatevaluewehavesinx=n=0(1)n(2n+1)!x2n+1sinx=xx33!+o(x3)x[0,1]xx36sinxx1x26sinxx101(1x26)dx01sinxxdx1wehave01(1x26)dx=[x118x3]01=1118=1718171801sinxxdx1wecantakev0=12+1746asaapprimatevalueforthisintegralI0,5+0,369I0,869

Commented by mathmax by abdo last updated on 08/Apr/20

forgive error of typo v_0 =(1/2) +((17)/(36))  ⇒ I ∼0,5 +0,472 ⇒  I ∼0,972

forgiveerroroftypov0=12+1736I0,5+0,472I0,972

Commented by M±th+et£s last updated on 08/Apr/20

thank you sir

thankyousir

Commented by abdomathmax last updated on 08/Apr/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com