Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 88065 by arcana last updated on 08/Apr/20

lim_(n→∞)  (1/n)Σ_(i=1) ^n  cos^2 (((πi)/n))

limn1nni=1cos2(πin)

Commented by mathmax by abdo last updated on 08/Apr/20

∫_a ^b  f(x)dx =lim_(n→+∞) ((b−a)/n)Σ_(k=1) ^n  f(a+((k(b−a))/n))  (Rieman sum) ⇒  lim_(n→∞)  (1/n)Σ_(i=1) ^n  cos^2 (((iπ)/n)) =(1/π)lim_(n→+∞)  ((π−0)/n)Σ_(i=1) ^n cos^2 (((i(π−0))/n))  =(1/π)∫_0 ^π  cos^2 x dx =(1/(2π))∫_0 ^π (1+cos(2x))dx  =(1/2) +(1/(4π))[sin(2x)]_0 ^π  =(1/2)

abf(x)dx=limn+bank=1nf(a+k(ba)n)(Riemansum)limn1ni=1ncos2(iπn)=1πlimn+π0ni=1ncos2(i(π0)n)=1π0πcos2xdx=12π0π(1+cos(2x))dx=12+14π[sin(2x)]0π=12

Commented by arcana last updated on 08/Apr/20

gracias

gracias

Commented by abdomathmax last updated on 10/Apr/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com