Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88104 by ar247 last updated on 08/Apr/20

∫_0 ^(+∞) (√(3+e^(−2x) ))dx

$$\int_{\mathrm{0}} ^{+\infty} \sqrt{\mathrm{3}+{e}^{−\mathrm{2}{x}} }{dx} \\ $$

Commented by ar247 last updated on 08/Apr/20

with stap please

$${with}\:{stap}\:{please} \\ $$

Commented by mathmax by abdo last updated on 08/Apr/20

let take a try  I =∫_0 ^∞ (√(3+e^(−2x) ))dx  changement (√(3+e^(−2x) ))=t give  3+e^(−2x) =t^2  ⇒e^(−2x) =t^2 −3 ⇒−2x =ln(t^2 −3) ⇒x =−(1/2)ln(t^2 −3)  ⇒ I =∫_2 ^(√3)   t(−(1/2))×((2t)/(t^2 −3))dt = ∫_(√3) ^2  (t^2 /(t^2 −3))dt  =∫_(√3) ^2  ((t^2 −3+3)/(t^2 −3))dt =2−(√3)+3∫_(√3) ^2  (dt/(t^2 −3)) =2−(√3)+(3/(2(√3))) ∫_(√3) ^2 ((1/(t−(√3)))−(1/(t+(√3))))dt  =2−(√3)+((√3)/2) [ln∣((t−(√3))/(t+(√3)))∣]_(√3) ^2  +C   we have lim_(t→(√3))  ln∣((t−(√3))/(t+(√3)))∣=−∞  so this integral is dvergent...!

$${let}\:{take}\:{a}\:{try}\:\:{I}\:=\int_{\mathrm{0}} ^{\infty} \sqrt{\mathrm{3}+{e}^{−\mathrm{2}{x}} }{dx}\:\:{changement}\:\sqrt{\mathrm{3}+{e}^{−\mathrm{2}{x}} }={t}\:{give} \\ $$$$\mathrm{3}+{e}^{−\mathrm{2}{x}} ={t}^{\mathrm{2}} \:\Rightarrow{e}^{−\mathrm{2}{x}} ={t}^{\mathrm{2}} −\mathrm{3}\:\Rightarrow−\mathrm{2}{x}\:={ln}\left({t}^{\mathrm{2}} −\mathrm{3}\right)\:\Rightarrow{x}\:=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({t}^{\mathrm{2}} −\mathrm{3}\right) \\ $$$$\Rightarrow\:{I}\:=\int_{\mathrm{2}} ^{\sqrt{\mathrm{3}}} \:\:{t}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)×\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} −\mathrm{3}}{dt}\:=\:\int_{\sqrt{\mathrm{3}}} ^{\mathrm{2}} \:\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} −\mathrm{3}}{dt} \\ $$$$=\int_{\sqrt{\mathrm{3}}} ^{\mathrm{2}} \:\frac{{t}^{\mathrm{2}} −\mathrm{3}+\mathrm{3}}{{t}^{\mathrm{2}} −\mathrm{3}}{dt}\:=\mathrm{2}−\sqrt{\mathrm{3}}+\mathrm{3}\int_{\sqrt{\mathrm{3}}} ^{\mathrm{2}} \:\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{3}}\:=\mathrm{2}−\sqrt{\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\int_{\sqrt{\mathrm{3}}} ^{\mathrm{2}} \left(\frac{\mathrm{1}}{{t}−\sqrt{\mathrm{3}}}−\frac{\mathrm{1}}{{t}+\sqrt{\mathrm{3}}}\right){dt} \\ $$$$=\mathrm{2}−\sqrt{\mathrm{3}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\left[{ln}\mid\frac{{t}−\sqrt{\mathrm{3}}}{{t}+\sqrt{\mathrm{3}}}\mid\right]_{\sqrt{\mathrm{3}}} ^{\mathrm{2}} \:+{C}\:\:\:{we}\:{have}\:{lim}_{{t}\rightarrow\sqrt{\mathrm{3}}} \:{ln}\mid\frac{{t}−\sqrt{\mathrm{3}}}{{t}+\sqrt{\mathrm{3}}}\mid=−\infty \\ $$$${so}\:{this}\:{integral}\:{is}\:{dvergent}...! \\ $$$$ \\ $$

Answered by Joel578 last updated on 08/Apr/20

If x→+∞, then 3 + e^(−2x)  → 3,  hence ∫_0 ^( +∞)  (√(3 + e^(−2x) )) dx = +∞

$$\mathrm{If}\:{x}\rightarrow+\infty,\:\mathrm{then}\:\mathrm{3}\:+\:{e}^{−\mathrm{2}{x}} \:\rightarrow\:\mathrm{3}, \\ $$$$\mathrm{hence}\:\int_{\mathrm{0}} ^{\:+\infty} \:\sqrt{\mathrm{3}\:+\:{e}^{−\mathrm{2}{x}} }\:{dx}\:=\:+\infty \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com