All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 88169 by jagoll last updated on 08/Apr/20
findLaplacetransformt3.cos4t
Commented by mathmax by abdo last updated on 08/Apr/20
L(x3cos(4x))=∫0∞f(t)e−xtdt=∫0∞t3cos(4t)e−xtdt=Re(∫0∞t3ei4t−xtdt)∫0∞t3e(−x+4i)tdt=bypsrts[t3−x+4ie(−x+4i)t]0∞−1−x+4i∫0∞3t2e(−x+4i)tdt=3x−4i{[t2−x+4ie(−x+4i)t]0∞−1−x+4i∫0∞2te(−x+4i)tdt}=6(x−4i)2∫0∞te(−x+4i)tdt=6(x−4i)2{[−t−x+4ie(−x+4i)t]0∞−1−x+4i∫0∞e(−x+4i)tdt}=6(x−4i)3[1−x+4ie(−x+4i)t]0∞=6(x−4i)4=6(1x−4i)4=6(x+4ix2+16)4=6x2+16(x+4i)2(x+4i)2=6x2+16(x2+8ix−16)2=6x2+16{(x2+8ix)2−32(x2+8ix)+162}=6x2+16{x4+16ix3−64x2−32x2−8.32ix+162}⇒L(x3(4x))=6x2+16(x4−96x2+162)
Commented by mathmax by abdo last updated on 09/Apr/20
forgiveL(x3cos(4x))=6(x4−96x2+162)(x2+16)4
Answered by jagoll last updated on 09/Apr/20
L(cos4t)=ss2+16L(tcos4t)=−dds[ss2+16]=16−s2(s2+16)2L(t2cos4t)=−dds[16−s2(s2+16)2]=96s−2s3(s2+16)3L(t3cos4t)=−dds[96s−2s3(s2+16)3]=6(s4−96s2+256)(s2+16)4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com