Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 88169 by jagoll last updated on 08/Apr/20

find Laplace transform   t^3 . cos  4t

findLaplacetransformt3.cos4t

Commented by mathmax by abdo last updated on 08/Apr/20

L(x^3 cos(4x))=∫_0 ^∞  f(t) e^(−xt)  dt  =∫_0 ^∞ t^3  cos(4t)e^(−xt)  dt =Re(∫_0 ^∞  t^3 e^(i4t−xt)  dt)  ∫_0 ^∞ t^3  e^((−x+4i)t)  dt =_(bypsrts)    [(t^3 /(−x+4i)) e^((−x+4i)t) ]_0 ^∞ −(1/(−x+4i))∫_0 ^∞ 3t^2  e^((−x+4i)t) dt  =(3/(x−4i)) {  [(t^2 /(−x+4i)) e^((−x+4i)t) ]_0 ^∞ −(1/(−x+4i))∫_0 ^∞ 2t e^((−x+4i)t) dt}  =(6/((x−4i)^2 )) ∫_0 ^∞  t e^((−x+4i)t)  dt   =(6/((x−4i)^2 )){ [−(t/(−x+4i)) e^((−x+4i)t) ]_0 ^∞ −(1/(−x+4i))∫_0 ^∞  e^((−x+4i)t)  dt}  =(6/((x−4i)^3 ))[(1/(−x+4i)) e^((−x+4i)t) ]_0 ^∞  =(6/((x−4i)^4 )) =6((1/(x−4i)))^4   =6(((x+4i)/(x^2  +16)))^4  =(6/(x^2  +16))(x+4i)^2 (x+4i)^2   =(6/(x^2  +16))(x^2 +8ix −16)^2   =(6/(x^2  +16)){ (x^2  +8ix)^2 −32(x^2  +8ix)+16^2 }  =(6/(x^2  +16)){ x^4  +16ix^3 −64 x^2 −32x^2 −8.32ix +16^2 } ⇒  L(x^3 (4x)) =(6/(x^2  +16))( x^4 −96x^2  +16^2 )

L(x3cos(4x))=0f(t)extdt=0t3cos(4t)extdt=Re(0t3ei4txtdt)0t3e(x+4i)tdt=bypsrts[t3x+4ie(x+4i)t]01x+4i03t2e(x+4i)tdt=3x4i{[t2x+4ie(x+4i)t]01x+4i02te(x+4i)tdt}=6(x4i)20te(x+4i)tdt=6(x4i)2{[tx+4ie(x+4i)t]01x+4i0e(x+4i)tdt}=6(x4i)3[1x+4ie(x+4i)t]0=6(x4i)4=6(1x4i)4=6(x+4ix2+16)4=6x2+16(x+4i)2(x+4i)2=6x2+16(x2+8ix16)2=6x2+16{(x2+8ix)232(x2+8ix)+162}=6x2+16{x4+16ix364x232x28.32ix+162}L(x3(4x))=6x2+16(x496x2+162)

Commented by mathmax by abdo last updated on 09/Apr/20

forgive  L(x^3 cos(4x)) =((6(x^4 −96x^2  +16^2 ))/((x^2  +16)^4 ))

forgiveL(x3cos(4x))=6(x496x2+162)(x2+16)4

Answered by jagoll last updated on 09/Apr/20

L(cos 4t) = (s/(s^2 +16))  L(t cos 4t) = −(d/ds)[(s/(s^2 +16))] = ((16−s^2 )/((s^2 +16)^2 ))  L(t^2  cos 4t) = −(d/ds)[((16−s^2 )/((s^2 +16)^2 ))]  = ((96s−2s^3 )/((s^2 +16)^3 ))  L(t^3 cos 4t) = −(d/ds)[((96s−2s^3 )/((s^2 +16)^3 ))]  = ((6(s^4 −96s^2 +256))/((s^2 +16)^4 ))

L(cos4t)=ss2+16L(tcos4t)=dds[ss2+16]=16s2(s2+16)2L(t2cos4t)=dds[16s2(s2+16)2]=96s2s3(s2+16)3L(t3cos4t)=dds[96s2s3(s2+16)3]=6(s496s2+256)(s2+16)4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com