Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88206 by jagoll last updated on 09/Apr/20

∫  ((x+x^3 )/(1+x^4 )) dx

x+x31+x4dx

Answered by john santu last updated on 09/Apr/20

= ∫ (x/(1+x^4 )) dx + ∫ (x^3 /(1+x^4 )) dx  = (1/2)∫ ((2x)/(1+x^4 )) dx + (1/4)∫ ((4x^3 )/(1+x^4 )) dx  = (1/2) ∫ ((d(x^2 ))/(1+(x^2 )^2 )) + (1/4)∫ ((d(1+x^4 ))/(1+x^4 ))  = (1/4) ln (1+x^4 ) + (1/2)∫ (du/(1+u^2 )) , [ u =x^2 ]  = (1/4)ln(1+x^4 ) +(1/2)arc tan (x^2 ) + c

=x1+x4dx+x31+x4dx=122x1+x4dx+144x31+x4dx=12d(x2)1+(x2)2+14d(1+x4)1+x4=14ln(1+x4)+12du1+u2,[u=x2]=14ln(1+x4)+12arctan(x2)+c

Commented by jagoll last updated on 09/Apr/20

thank you mr

thankyoumr

Terms of Service

Privacy Policy

Contact: info@tinkutara.com