Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 88214 by M±th+et£s last updated on 09/Apr/20

Answered by ajfour last updated on 09/Apr/20

AB=t  ,  radius=r , AD=DC=b  upper section of OB=c  t^2 =2b^2    ;   tan α=(r/(t+r))  ((√(r^2 +c^2 ))/(2b))=(c/r)=(r/(t+r))  ⇒   ((√(r^2 +c^2 ))/(t(√2)))=(c/r)=(r/(t+r))    ⇒  c=(r^2 /(t+r))  ⇒  ((r^2 +((r^2 /(t+r)))^2 )/(2t^2 ))=(r^2 /((t+r)^2 ))  let  t/r=s  ⇒    ((1+(1/((s+1)^2 )))/(2s^2 ))=(1/((s+1)^2 ))  ⇒  (s+1)^2 +1=2s^2   s^2 −2s−2=0  s=1+(√3)  tan α=(1/(s+1)) = (1/(2+(√3))) = 2−(√3) .    ⇒  𝛂=tan^(−1) (2−(√3) )=15° .

AB=t,radius=r,AD=DC=buppersectionofOB=ct2=2b2;tanα=rt+rr2+c22b=cr=rt+rr2+c2t2=cr=rt+rc=r2t+rr2+(r2t+r)22t2=r2(t+r)2lett/r=s1+1(s+1)22s2=1(s+1)2(s+1)2+1=2s2s22s2=0s=1+3tanα=1s+1=12+3=23.α=tan1(23)=15°.

Commented by mr W last updated on 09/Apr/20

correct!

correct!

Commented by M±th+et£s last updated on 09/Apr/20

nice solution sir

nicesolutionsir

Answered by mr W last updated on 09/Apr/20

Commented by mr W last updated on 09/Apr/20

r=radius  AD=DC  ⇒CF=((OB)/2)=(r/2)  CD=CE×cos α=2r cos α  CF=CD×sin α=2r cos α sin α=r sin 2α  ⇒r sin 2α=(r/2)  ⇒sin 2α=(1/2) ⇒2α=30° ⇒α=15°

r=radiusAD=DCCF=OB2=r2CD=CE×cosα=2rcosαCF=CD×sinα=2rcosαsinα=rsin2αrsin2α=r2sin2α=122α=30°α=15°

Commented by M±th+et£s last updated on 09/Apr/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com