Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 88263 by M±th+et£s last updated on 09/Apr/20

prove that   ∣((e^z −e^(−z) )/2)∣^2 +cos^2 y=sinh^2 x     when z=x+iy

provethatezez22+cos2y=sinh2xwhenz=x+iy

Commented by M±th+et£s last updated on 09/Apr/20

please help

pleasehelp

Answered by TANMAY PANACEA. last updated on 09/Apr/20

e^(x+iy) =e^x .e^(iy) =(coshx+sinhx)(cosy+isiny)  =coshxcosy+icoshxsiny+sinhxcosy+isinhxsiny  =cosy(coshx+sinhx)+isiny(coshx+sinhx)    e^(−(x+iy)) =e^(−x) .e^(−iy) =(coshx−sinhx)(cosy−isiny)  =coshxcosy−icoshxsiny−sinhxcosy+isinhxsiny  =cosy(coshx−sinhx)−isiny(coshx−sinhx)  now  ((e^z −e^(−z) )/2)=(1/2)[cosy(2sinhx)+isiny(2coshx)]    ∣((e^z −e^(−z) )/2)∣^2 =(cosysinhx)^2 +(sinycoshx)^2   cos^2 y(sinhx)^2 +sin^2 y(coshx)^2 +cos^2 y  =cos^2 y[1+(sinhx)^2 ]+sin^2 y(coshx)^2   =cos^2 y[cos^2 hx−sin^2 hx+sin^2 hx]+sin^2 ycos^2 hx  =(cos^2 y+sin^2 y)cos^2 hx  =cos^2 hx  pls check

ex+iy=ex.eiy=(coshx+sinhx)(cosy+isiny)=coshxcosy+icoshxsiny+sinhxcosy+isinhxsiny=cosy(coshx+sinhx)+isiny(coshx+sinhx)e(x+iy)=ex.eiy=(coshxsinhx)(cosyisiny)=coshxcosyicoshxsinysinhxcosy+isinhxsiny=cosy(coshxsinhx)isiny(coshxsinhx)nowezez2=12[cosy(2sinhx)+isiny(2coshx)]ezez22=(cosysinhx)2+(sinycoshx)2cos2y(sinhx)2+sin2y(coshx)2+cos2y=cos2y[1+(sinhx)2]+sin2y(coshx)2=cos2y[cos2hxsin2hx+sin2hx]+sin2ycos2hx=(cos2y+sin2y)cos2hx=cos2hxplscheck

Commented by M±th+et£s last updated on 09/Apr/20

yes sir its typo god bless you

yessiritstypogodblessyou

Commented by TANMAY PANACEA. last updated on 09/Apr/20

most welcome sir

mostwelcomesir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com