Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 88272 by ajfour last updated on 09/Apr/20

Commented by ajfour last updated on 09/Apr/20

Find radius of semicircle in  terms of ellipse parameters  a and b.  (a>b)

$${Find}\:{radius}\:{of}\:{semicircle}\:{in} \\ $$$${terms}\:{of}\:{ellipse}\:{parameters} \\ $$$${a}\:{and}\:{b}.\:\:\left({a}>{b}\right) \\ $$

Answered by mr W last updated on 09/Apr/20

Commented by mr W last updated on 10/Apr/20

let μ=(b/a)  say P(a cos θ, b sin θ)  (dy/dx)=((b cos θ)/(−a sin θ))=−(μ/(tan θ))  tan ϕ=−(1/(dy/dx))=((tan θ)/μ)=((sin θ)/(μ cos θ))  ⇒sin ϕ=((sin θ)/((√(sin^2  θ+μ^2 cos^2  θ)) ))  ⇒cos ϕ=((μ cos θ)/((√(sin^2  θ+μ^2 cos^2  θ)) ))    x_s =a cos θ −r cos ϕ  y_s =b sin θ −r sin ϕ  (a−x_s )^2 +y_s ^2 =r^2   (a−a cos θ +r cos ϕ)^2 +(b sin θ −r sin ϕ)^2 =r^2   a^2 (1−cos θ)^2  +2ar(1−cos θ) cos ϕ+b^2  sin^2  θ −2br sin θ sin ϕ=0  a^2 (1−cos θ)^2  +2ar(((1−cos θ)μ cos θ)/(√(sin^2  θ+μ^2 cos^2  θ)))+b^2  sin^2  θ −2br((sin θ sin θ)/(√(sin^2  θ+μ^2 cos^2  θ)))=0  with λ=(r/a)  ⇒(1−cos θ)^2 +μ^2  sin^2  θ =2μλ((1−cos θ)/((√(sin^2  θ+μ^2  cos^2  θ)) ))  ⇒λ=(([1+μ^2 −(1−μ^2 )cos θ](√(sin^2  θ+μ^2  cos^2  θ)))/(2μ))   ...(i)    x_R =2x_s −a  x_R =−a(1−2cos θ)−2r cos ϕ=−a(1−2cos θ)−((2μr cos θ)/((√(sin^2  θ+μ^2 cos^2  θ)) ))  y_R =2y_s   y_R =2(b sin θ −r sin ϕ)=2sin θ(b−(r/((√(sin^2  θ+μ^2 cos^2  θ)) )))  (x_R ^2 /a^2 )+(y_R ^2 /b^2 )=1  b^2 [a(1−2 cos θ)+((2μr cos θ)/(√(sin^2  θ+μ^2 cos^2  θ)))]^2 +4a^2 sin^2  θ(b−(r/((√(sin^2  θ+μ^2 cos^2  θ)) )))^2 =a^2 b^2   ⇒[1−2 cos θ+((2μλ cos θ)/(√(sin^2  θ+μ^2 cos^2  θ)))]^2 +4 sin^2  θ(1−(λ/(μ(√(sin^2  θ+μ^2 cos^2  θ)) )))^2 =1  ⇒(1−μ^2 )[μ^4 cos^2  θ(1+cos θ)+(1−cos θ)^3 ]=2μ^4  cos θ  ...(ii)    from (i) and (ii) we can get θ and λ.    example: a=4, b=3⇒μ=(3/4)  ⇒θ=73.7398°  ⇒λ=0.9434

$${let}\:\mu=\frac{{b}}{{a}} \\ $$$${say}\:{P}\left({a}\:\mathrm{cos}\:\theta,\:{b}\:\mathrm{sin}\:\theta\right) \\ $$$$\frac{{dy}}{{dx}}=\frac{{b}\:\mathrm{cos}\:\theta}{−{a}\:\mathrm{sin}\:\theta}=−\frac{\mu}{\mathrm{tan}\:\theta} \\ $$$$\mathrm{tan}\:\varphi=−\frac{\mathrm{1}}{\frac{{dy}}{{dx}}}=\frac{\mathrm{tan}\:\theta}{\mu}=\frac{\mathrm{sin}\:\theta}{\mu\:\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\mathrm{sin}\:\varphi=\frac{\mathrm{sin}\:\theta}{\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}\:} \\ $$$$\Rightarrow\mathrm{cos}\:\varphi=\frac{\mu\:\mathrm{cos}\:\theta}{\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}\:} \\ $$$$ \\ $$$${x}_{{s}} ={a}\:\mathrm{cos}\:\theta\:−{r}\:\mathrm{cos}\:\varphi \\ $$$${y}_{{s}} ={b}\:\mathrm{sin}\:\theta\:−{r}\:\mathrm{sin}\:\varphi \\ $$$$\left({a}−{x}_{{s}} \right)^{\mathrm{2}} +{y}_{{s}} ^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left({a}−{a}\:\mathrm{cos}\:\theta\:+{r}\:\mathrm{cos}\:\varphi\right)^{\mathrm{2}} +\left({b}\:\mathrm{sin}\:\theta\:−{r}\:\mathrm{sin}\:\varphi\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} \:+\mathrm{2}{ar}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\:\mathrm{cos}\:\varphi+{b}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta\:−\mathrm{2}{br}\:\mathrm{sin}\:\theta\:\mathrm{sin}\:\varphi=\mathrm{0} \\ $$$${a}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} \:+\mathrm{2}{ar}\frac{\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\mu\:\mathrm{cos}\:\theta}{\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}}+{b}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta\:−\mathrm{2}{br}\frac{\mathrm{sin}\:\theta\:\mathrm{sin}\:\theta}{\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}}=\mathrm{0} \\ $$$${with}\:\lambda=\frac{{r}}{{a}} \\ $$$$\Rightarrow\left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\mu^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta\:=\mathrm{2}\mu\lambda\frac{\mathrm{1}−\mathrm{cos}\:\theta}{\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta}\:} \\ $$$$\Rightarrow\lambda=\frac{\left[\mathrm{1}+\mu^{\mathrm{2}} −\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{cos}\:\theta\right]\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta}}{\mathrm{2}\mu}\:\:\:...\left({i}\right) \\ $$$$ \\ $$$${x}_{{R}} =\mathrm{2}{x}_{{s}} −{a} \\ $$$${x}_{{R}} =−{a}\left(\mathrm{1}−\mathrm{2cos}\:\theta\right)−\mathrm{2}{r}\:\mathrm{cos}\:\varphi=−{a}\left(\mathrm{1}−\mathrm{2cos}\:\theta\right)−\frac{\mathrm{2}\mu{r}\:\mathrm{cos}\:\theta}{\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}\:} \\ $$$${y}_{{R}} =\mathrm{2}{y}_{{s}} \\ $$$${y}_{{R}} =\mathrm{2}\left({b}\:\mathrm{sin}\:\theta\:−{r}\:\mathrm{sin}\:\varphi\right)=\mathrm{2sin}\:\theta\left({b}−\frac{{r}}{\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}\:}\right) \\ $$$$\frac{{x}_{{R}} ^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}_{{R}} ^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${b}^{\mathrm{2}} \left[{a}\left(\mathrm{1}−\mathrm{2}\:\mathrm{cos}\:\theta\right)+\frac{\mathrm{2}\mu{r}\:\mathrm{cos}\:\theta}{\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}}\right]^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta\left({b}−\frac{{r}}{\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}\:}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\Rightarrow\left[\mathrm{1}−\mathrm{2}\:\mathrm{cos}\:\theta+\frac{\mathrm{2}\mu\lambda\:\mathrm{cos}\:\theta}{\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}}\right]^{\mathrm{2}} +\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\theta\left(\mathrm{1}−\frac{\lambda}{\mu\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}\:}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\left[\mu^{\mathrm{4}} \mathrm{cos}^{\mathrm{2}} \:\theta\left(\mathrm{1}+\mathrm{cos}\:\theta\right)+\left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{3}} \right]=\mathrm{2}\mu^{\mathrm{4}} \:\mathrm{cos}\:\theta\:\:...\left({ii}\right) \\ $$$$ \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{we}\:{can}\:{get}\:\theta\:{and}\:\lambda. \\ $$$$ \\ $$$${example}:\:{a}=\mathrm{4},\:{b}=\mathrm{3}\Rightarrow\mu=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\theta=\mathrm{73}.\mathrm{7398}° \\ $$$$\Rightarrow\lambda=\mathrm{0}.\mathrm{9434} \\ $$

Commented by ajfour last updated on 10/Apr/20

Thanks sir!

$${Thanks}\:{sir}! \\ $$

Commented by liki last updated on 09/Apr/20

...sory mr W , how to get your contact i need help for you ; my contact +255745266946

$$...\boldsymbol{{sory}}\:\boldsymbol{{mr}}\:\boldsymbol{{W}}\:,\:{how}\:{to}\:{get}\:{your}\:{contact}\:{i}\:{need}\:{help}\:{for}\:{you}\:;\:{my}\:{contact}\:+\mathrm{255745266946}\: \\ $$

Commented by mr W last updated on 09/Apr/20

sorry sir, if i could help you, i can do it  only within this forum. so, when you  have a question, just post it here.

$${sorry}\:{sir},\:{if}\:{i}\:{could}\:{help}\:{you},\:{i}\:{can}\:{do}\:{it} \\ $$$${only}\:{within}\:{this}\:{forum}.\:{so},\:{when}\:{you} \\ $$$${have}\:{a}\:{question},\:{just}\:{post}\:{it}\:{here}. \\ $$

Commented by liki last updated on 09/Apr/20

..there is something i want to ask you sir, thus why i wrote my whatssap no

$$..{there}\:{is}\:{something}\:{i}\:{want}\:{to}\:{ask}\:{you}\:{sir},\:{thus}\:{why}\:{i}\:{wrote}\:{my}\:{whatssap}\:{no} \\ $$

Commented by Ar Brandon last updated on 09/Apr/20

Oh my !

$${Oh}\:{my}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com