Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88286 by Chi Mes Try last updated on 09/Apr/20

Commented by abdomathmax last updated on 09/Apr/20

U_n ={(1+(1/n))^(n+1) −1−(1/n)}^(−n)   ⇒U_n =e^(−nln{ (1+(1/n))^(n+1) −1−(1/n)}  )   we have  (1+(1/n))^(n+1) −1−(1/n) =e^((n+1)ln(1+(1/n))) −1−(1/n) and  ln^′ (1+u)=1−u +o(u^2 ) ⇒  ln(1+u) =u−(u^2 /2) +o(u^3 ) ⇒  ln(1+(1/n))=(1/n)−(1/(2n^2 )) +o((1/n^3 )) ⇒  (n+1)ln(1+(1/n)) =1+(1/n)−((n+1)/(2n^2 )) +o((1/n^2 ))  =1+(1/n)−(1/(2n))−(1/(2n^2 )) +o((1/n^2 )) ⇒  e^((n+1)ln(1+(1/n))) =e e^((1/(2n))−(1/(2n^2 ))+...) ∼e(1+(1/(2n))−(1/(2n^2 ))) ⇒  (1+(1/n))^(n+1) −1−(1/n) ∼e +(e/(2n))−(e/(2n^2 ))−1−(1/n)  ∼e−1 +((e/2)−1)×(1/n)−(e/(2n^2 )) ⇒  U_n ∼e^(−n{ e−1 +((e−2)/(2n))−(e/(2n^2 ))})  =e^(−(e−1)n)  e^(−((e−2)/2)+(e/(2n)))   ∼e^((e−2)/2)  ×e^(−(e−1)n) { 1+(e/(2n))} due to term e^(−(e−1)n)   Σ U_n is convergent

$${U}_{{n}} =\left\{\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}+\mathrm{1}} −\mathrm{1}−\frac{\mathrm{1}}{{n}}\right\}^{−{n}} \\ $$$$\Rightarrow{U}_{{n}} ={e}^{−{nln}\left\{\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}+\mathrm{1}} −\mathrm{1}−\frac{\mathrm{1}}{{n}}\right\}\:\:} \:\:{we}\:{have} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}+\mathrm{1}} −\mathrm{1}−\frac{\mathrm{1}}{{n}}\:={e}^{\left({n}+\mathrm{1}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)} −\mathrm{1}−\frac{\mathrm{1}}{{n}}\:{and} \\ $$$${ln}^{'} \left(\mathrm{1}+{u}\right)=\mathrm{1}−{u}\:+{o}\left({u}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{u}\right)\:={u}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({u}^{\mathrm{3}} \right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)=\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\:+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\right)\:\Rightarrow \\ $$$$\left({n}+\mathrm{1}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\:=\mathrm{1}+\frac{\mathrm{1}}{{n}}−\frac{{n}+\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\:+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right) \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{\mathrm{2}{n}}−\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\:+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\:\Rightarrow \\ $$$${e}^{\left({n}+\mathrm{1}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)} ={e}\:{e}^{\frac{\mathrm{1}}{\mathrm{2}{n}}−\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }+...} \sim{e}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}−\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\right)\:\Rightarrow \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}+\mathrm{1}} −\mathrm{1}−\frac{\mathrm{1}}{{n}}\:\sim{e}\:+\frac{{e}}{\mathrm{2}{n}}−\frac{{e}}{\mathrm{2}{n}^{\mathrm{2}} }−\mathrm{1}−\frac{\mathrm{1}}{{n}} \\ $$$$\sim{e}−\mathrm{1}\:+\left(\frac{{e}}{\mathrm{2}}−\mathrm{1}\right)×\frac{\mathrm{1}}{{n}}−\frac{{e}}{\mathrm{2}{n}^{\mathrm{2}} }\:\Rightarrow \\ $$$${U}_{{n}} \sim{e}^{−{n}\left\{\:{e}−\mathrm{1}\:+\frac{{e}−\mathrm{2}}{\mathrm{2}{n}}−\frac{{e}}{\mathrm{2}{n}^{\mathrm{2}} }\right\}} \:={e}^{−\left({e}−\mathrm{1}\right){n}} \:{e}^{−\frac{{e}−\mathrm{2}}{\mathrm{2}}+\frac{{e}}{\mathrm{2}{n}}} \\ $$$$\sim{e}^{\frac{{e}−\mathrm{2}}{\mathrm{2}}} \:×{e}^{−\left({e}−\mathrm{1}\right){n}} \left\{\:\mathrm{1}+\frac{{e}}{\mathrm{2}{n}}\right\}\:{due}\:{to}\:{term}\:{e}^{−\left({e}−\mathrm{1}\right){n}} \\ $$$$\Sigma\:{U}_{{n}} {is}\:{convergent} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com