All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 88288 by Chi Mes Try last updated on 09/Apr/20
Commented by abdomathmax last updated on 10/Apr/20
I=∫01sin(ln∣x∣)ln∣x∣dxchangementln(x)=−u⇒I=∫01sin(lnx)lnxdx=−∫0+∞−sinu−u(−e−u)du=∫0∞sinuue−uduletf(t)=∫0∞sinuue−tuduwitht>0f′(t)=−∫0∞e−tusinudu=−Im(∫0∞e−tu+iudu)=−Im(∫0∞e(−t+i)udu)∫0∞e(−t+i)udu=[1−t+ie(−t+i)u]0+∞=−1−t+i=1t−i=t+it2+1⇒f′(t)=−11+t2⇒f(t)=k−arctantlimt→0f(t)=∫0∞sinuudu=π2=k⇒f(t)=π2−arcrant(t>0)I=f(1)=π2−π4=π4
Answered by mind is power last updated on 09/Apr/20
u=−ln(x)⇒x=e−udx=−e−udu=∫0+∞sin(u)ue−uduf(t)=∫0×∞sin(u)ue−utduf′(t)=∫0+∞−sin(u)e−utdu=−Im∫0+∞eu(i−t)du=Im{1i−t}=−11+t2f(t)=−arctan(t)+π2f(1)=π2−π4=π4=∫01sin(ln(x))ln(x)dx=π4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com