Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 88310 by ajfour last updated on 09/Apr/20

Commented by ajfour last updated on 09/Apr/20

Q.88272 (revisited)

$${Q}.\mathrm{88272}\:\left({revisited}\right) \\ $$

Answered by ajfour last updated on 10/Apr/20

h^2 +k^2 =r^2   y^2 =b^2 (1−(((x−a)^2 )/a^2 ))       [ellipse]  x^2 +y^2 −2hx−2ky=0   [circle]  (x^2 +y^2 −2hx)^2 =4(r^2 −h^2 )y^2   ⇒  {x^2 +b^2 (1−(((x−a)^2 )/a^2 ))−2hx}^2         = 4(r^2 −h^2 )b^2 (1−(((x−a)^2 )/a^2 ))  roots of above eq. are  x_1 =0 , x_2 =2h, x_3 =x_4 =t  first we eliminate x=0,  then determine h(r).  then eliminate t and  eventually find r.   ....  let (x/a)=X, (h/a)=s, (b^2 /a^2 )=q,  (t/a)=m,  (r/a)=R .   {X^2 +q(2X−X^2 )−2sX}^2        = 4(R^2 −s^2 )q(2X−X^2 )  ⇒ X{X+q(2−X)−2s}^2          =4q(R^2 −s^2 )(2−X)  roots are now  X=2s, m,m.  lets put X=2s  ⇒qs(1−s)=(R^2 −s^2 )  ⇒  R^2 =(1−q)s^2 +qs      ...(I)  And  R^2 −s^2 =qs(1−s)   ...(II)  now generally  (1−q)^2 X^3 +4(1−q)(q−s)X^2 +4(q−s)^2 X    +4q(R^2 −s^2 )X−8q(R^2 −s^2 )=0  ⇒  (1−q)^2 X^3 +4(1−q)(q−s)X^2     +4{(q−s)^2 +q(R^2 −s^2 )}X    −8q(R^2 −s^2 )=0   2m+2s=−((4(q−s))/((1−q)))    ...(i)  2m^2 s=((8q(R^2 −s^2 ))/((1−q)^2 ))    ...(ii)  ⇒   s{((2(s−q))/((1−q)))−s}^2 =((4q(R^2 −s^2 ))/((1−q)^2 ))  now using (II)  ⇒   s{((2(s−q))/((1−q)))−s}^2 =((4q(qs)(1−s))/((1−q)^2 ))  ⇒ {((2(s−q))/((1−q)))−s}^2 =((4q^2 (1−s))/((1−q)^2 ))  ⇒{(1+q)s−2q}^2         =4q^2 (1−s)  (1+q)^2 s^2 −4qs=0      and as s≠0  s=((4q)/((1+q)^2 ))   Now using (I)  ⇒  R=(√((1−q)s^2 +qs ))    ⇒ R = (√(((16(1−q)q^2 )/((1+q)^4 ))+((4q^2 )/((1+q)^2 ))))  or   R=((2q(√((1−q)^2 +4)))/((1+q)^2 ))  for example if a=4, b=3  q=(9/(16)),   R=((18(√(1073)))/(625)) ≈ 0.9434  ...

$${h}^{\mathrm{2}} +{k}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} ={b}^{\mathrm{2}} \left(\mathrm{1}−\frac{\left({x}−{a}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\:\:\:\:\:\:\:\left[{ellipse}\right] \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{hx}−\mathrm{2}{ky}=\mathrm{0}\:\:\:\left[{circle}\right] \\ $$$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{hx}\right)^{\mathrm{2}} =\mathrm{4}\left({r}^{\mathrm{2}} −{h}^{\mathrm{2}} \right){y}^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\left\{{x}^{\mathrm{2}} +{b}^{\mathrm{2}} \left(\mathrm{1}−\frac{\left({x}−{a}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)−\mathrm{2}{hx}\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\:\mathrm{4}\left({r}^{\mathrm{2}} −{h}^{\mathrm{2}} \right){b}^{\mathrm{2}} \left(\mathrm{1}−\frac{\left({x}−{a}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right) \\ $$$${roots}\:{of}\:{above}\:{eq}.\:{are} \\ $$$${x}_{\mathrm{1}} =\mathrm{0}\:,\:{x}_{\mathrm{2}} =\mathrm{2}{h},\:{x}_{\mathrm{3}} ={x}_{\mathrm{4}} ={t} \\ $$$${first}\:{we}\:{eliminate}\:{x}=\mathrm{0}, \\ $$$${then}\:{determine}\:{h}\left({r}\right). \\ $$$${then}\:{eliminate}\:{t}\:{and} \\ $$$${eventually}\:{find}\:\boldsymbol{{r}}.\: \\ $$$$.... \\ $$$${let}\:\frac{{x}}{{a}}={X},\:\frac{{h}}{{a}}={s},\:\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }={q},\:\:\frac{{t}}{{a}}={m}, \\ $$$$\frac{{r}}{{a}}={R}\:.\: \\ $$$$\left\{{X}^{\mathrm{2}} +{q}\left(\mathrm{2}{X}−{X}^{\mathrm{2}} \right)−\mathrm{2}{sX}\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\:=\:\mathrm{4}\left({R}^{\mathrm{2}} −{s}^{\mathrm{2}} \right){q}\left(\mathrm{2}{X}−{X}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:{X}\left\{{X}+{q}\left(\mathrm{2}−{X}\right)−\mathrm{2}{s}\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:=\mathrm{4}{q}\left({R}^{\mathrm{2}} −{s}^{\mathrm{2}} \right)\left(\mathrm{2}−{X}\right) \\ $$$${roots}\:{are}\:{now}\:\:{X}=\mathrm{2}{s},\:{m},{m}. \\ $$$${lets}\:{put}\:{X}=\mathrm{2}{s} \\ $$$$\Rightarrow{qs}\left(\mathrm{1}−{s}\right)=\left({R}^{\mathrm{2}} −{s}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:{R}^{\mathrm{2}} =\left(\mathrm{1}−{q}\right){s}^{\mathrm{2}} +{qs}\:\:\:\:\:\:...\left({I}\right) \\ $$$${And}\:\:{R}^{\mathrm{2}} −{s}^{\mathrm{2}} ={qs}\left(\mathrm{1}−{s}\right)\:\:\:...\left({II}\right) \\ $$$${now}\:{generally} \\ $$$$\left(\mathrm{1}−{q}\right)^{\mathrm{2}} {X}^{\mathrm{3}} +\mathrm{4}\left(\mathrm{1}−{q}\right)\left({q}−{s}\right){X}^{\mathrm{2}} +\mathrm{4}\left({q}−{s}\right)^{\mathrm{2}} {X} \\ $$$$\:\:+\mathrm{4}{q}\left({R}^{\mathrm{2}} −{s}^{\mathrm{2}} \right){X}−\mathrm{8}{q}\left({R}^{\mathrm{2}} −{s}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{1}−{q}\right)^{\mathrm{2}} {X}^{\mathrm{3}} +\mathrm{4}\left(\mathrm{1}−{q}\right)\left({q}−{s}\right){X}^{\mathrm{2}} \\ $$$$\:\:+\mathrm{4}\left\{\left({q}−{s}\right)^{\mathrm{2}} +{q}\left({R}^{\mathrm{2}} −{s}^{\mathrm{2}} \right)\right\}{X} \\ $$$$\:\:−\mathrm{8}{q}\left({R}^{\mathrm{2}} −{s}^{\mathrm{2}} \right)=\mathrm{0}\: \\ $$$$\mathrm{2}{m}+\mathrm{2}{s}=−\frac{\mathrm{4}\left({q}−{s}\right)}{\left(\mathrm{1}−{q}\right)}\:\:\:\:...\left({i}\right) \\ $$$$\mathrm{2}{m}^{\mathrm{2}} {s}=\frac{\mathrm{8}{q}\left({R}^{\mathrm{2}} −{s}^{\mathrm{2}} \right)}{\left(\mathrm{1}−{q}\right)^{\mathrm{2}} }\:\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\:\:\:{s}\left\{\frac{\mathrm{2}\left({s}−{q}\right)}{\left(\mathrm{1}−{q}\right)}−{s}\right\}^{\mathrm{2}} =\frac{\mathrm{4}{q}\left({R}^{\mathrm{2}} −{s}^{\mathrm{2}} \right)}{\left(\mathrm{1}−{q}\right)^{\mathrm{2}} } \\ $$$${now}\:{using}\:\left({II}\right) \\ $$$$\Rightarrow\:\:\:{s}\left\{\frac{\mathrm{2}\left({s}−{q}\right)}{\left(\mathrm{1}−{q}\right)}−{s}\right\}^{\mathrm{2}} =\frac{\mathrm{4}{q}\left({qs}\right)\left(\mathrm{1}−{s}\right)}{\left(\mathrm{1}−{q}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\left\{\frac{\mathrm{2}\left({s}−{q}\right)}{\left(\mathrm{1}−{q}\right)}−{s}\right\}^{\mathrm{2}} =\frac{\mathrm{4}{q}^{\mathrm{2}} \left(\mathrm{1}−{s}\right)}{\left(\mathrm{1}−{q}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\left\{\left(\mathrm{1}+{q}\right){s}−\mathrm{2}{q}\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\mathrm{4}{q}^{\mathrm{2}} \left(\mathrm{1}−{s}\right) \\ $$$$\left(\mathrm{1}+{q}\right)^{\mathrm{2}} {s}^{\mathrm{2}} −\mathrm{4}{qs}=\mathrm{0}\:\:\:\: \\ $$$${and}\:{as}\:{s}\neq\mathrm{0} \\ $$$${s}=\frac{\mathrm{4}{q}}{\left(\mathrm{1}+{q}\right)^{\mathrm{2}} } \\ $$$$\:{Now}\:{using}\:\left({I}\right) \\ $$$$\Rightarrow\:\:{R}=\sqrt{\left(\mathrm{1}−{q}\right){s}^{\mathrm{2}} +{qs}\:}\: \\ $$$$\:\Rightarrow\:{R}\:=\:\sqrt{\frac{\mathrm{16}\left(\mathrm{1}−{q}\right){q}^{\mathrm{2}} }{\left(\mathrm{1}+{q}\right)^{\mathrm{4}} }+\frac{\mathrm{4}{q}^{\mathrm{2}} }{\left(\mathrm{1}+{q}\right)^{\mathrm{2}} }} \\ $$$${or}\:\:\:{R}=\frac{\mathrm{2}{q}\sqrt{\left(\mathrm{1}−{q}\right)^{\mathrm{2}} +\mathrm{4}}}{\left(\mathrm{1}+{q}\right)^{\mathrm{2}} } \\ $$$${for}\:{example}\:{if}\:{a}=\mathrm{4},\:{b}=\mathrm{3} \\ $$$${q}=\frac{\mathrm{9}}{\mathrm{16}},\:\:\:{R}=\frac{\mathrm{18}\sqrt{\mathrm{1073}}}{\mathrm{625}}\:\approx\:\mathrm{0}.\mathrm{9434} \\ $$$$... \\ $$

Commented by mr W last updated on 10/Apr/20

it′s perfectly solved!

$${it}'{s}\:{perfectly}\:{solved}! \\ $$

Commented by ajfour last updated on 10/Apr/20

great, thanks for the confirmation,  Sir, I′m too glad i cud solve it.

$${great},\:{thanks}\:{for}\:{the}\:{confirmation}, \\ $$$${Sir},\:{I}'{m}\:{too}\:{glad}\:{i}\:{cud}\:{solve}\:{it}. \\ $$

Commented by mr W last updated on 09/Apr/20

that′s right sir.

$${that}'{s}\:{right}\:{sir}. \\ $$

Commented by ajfour last updated on 10/Apr/20

thanks to mjS Sir.

$${thanks}\:{to}\:{mjS}\:{Sir}. \\ $$

Commented by ajfour last updated on 10/Apr/20

Commented by MJS last updated on 10/Apr/20

I tried the same path I used with the parabola  and also get R=((18(√(1073)))/(625)) for (a/b)=(4/3) but there  should be a scaling factor, I calculated with  a=1∧b=(3/4)

$$\mathrm{I}\:\mathrm{tried}\:\mathrm{the}\:\mathrm{same}\:\mathrm{path}\:\mathrm{I}\:\mathrm{used}\:\mathrm{with}\:\mathrm{the}\:\mathrm{parabola} \\ $$$$\mathrm{and}\:\mathrm{also}\:\mathrm{get}\:{R}=\frac{\mathrm{18}\sqrt{\mathrm{1073}}}{\mathrm{625}}\:\mathrm{for}\:\frac{{a}}{{b}}=\frac{\mathrm{4}}{\mathrm{3}}\:\mathrm{but}\:\mathrm{there} \\ $$$$\mathrm{should}\:\mathrm{be}\:\mathrm{a}\:\mathrm{scaling}\:\mathrm{factor},\:\mathrm{I}\:\mathrm{calculated}\:\mathrm{with} \\ $$$${a}=\mathrm{1}\wedge{b}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Commented by ajfour last updated on 10/Apr/20

so our answer should be right  then..?  required radius r=aR, Sir.

$${so}\:{our}\:{answer}\:{should}\:{be}\:{right} \\ $$$${then}..?\:\:{required}\:{radius}\:{r}={aR},\:{Sir}. \\ $$

Commented by mr W last updated on 10/Apr/20

i checked my result again and found  an error. now we have the same result.

$${i}\:{checked}\:{my}\:{result}\:{again}\:{and}\:{found} \\ $$$${an}\:{error}.\:{now}\:{we}\:{have}\:{the}\:{same}\:{result}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com