Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88414 by abdomathmax last updated on 10/Apr/20

find approcimstive value of   ∫_(π/3) ^(π/2)  (x/(sinx))dx

$${find}\:{approcimstive}\:{value}\:{of}\:\:\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx} \\ $$

Commented by mathmax by abdo last updated on 12/Apr/20

we have sinx =x−(x^3 /6) +....⇒x−(x^3 /6)≤sinx≤x  ∀ x∈[(π/3),(π/2)] ⇒  (1/x)≤(1/(sinx))≤(1/(x−(x^3 /6))) ⇒ 1≤(x/(sinx))≤(1/(1−(x^2 /6))) ⇒  (π/2)−(π/3)≤∫_(π/3) ^(π/2)  (x/(sinx))dx ≤ 6∫_(π/3) ^(π/2)  (dx/(6−x^2 ))  we have  ∫_(π/3) ^(π/2)  (dx/(6−x^2 )) =(1/(2(√6)))∫_(π/3) ^(π/2) ((1/((√6)−x))+(1/((√6)+x)))dx  =(1/(2(√6)))[ln∣(((√6)+x)/((√6)−x))∣]_(π/3) ^(π/2)  =(1/(2(√6))){ ln((((√6)+(π/2))/((√6)−(π/2))))−ln((((√6)+(π/3))/((√6)−(π/3))))}  =(1/(2(√6))){ln(((2(√6)+π)/(2(√6)−π)))−ln(((3(√6)+π)/(3(√6)−π)))} ⇒  (π/6)≤∫_(π/3) ^(π/2)  (x/(sinx))dx ≤((√6)/2){ ln(((2(√6)+π)/(2(√6)−π)))−ln(((3(√6)+π)/(3(√6)−π)))} we can take  v_0 =(π/2) +((√6)/4){ ln(((2(√6)+π)/(2(√6)−π)))−ln(((3(√6)+π)/(3(√6)−π)))} as a approximste value

$${we}\:{have}\:{sinx}\:={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\:+....\Rightarrow{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\leqslant{sinx}\leqslant{x}\:\:\forall\:{x}\in\left[\frac{\pi}{\mathrm{3}},\frac{\pi}{\mathrm{2}}\right]\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{x}}\leqslant\frac{\mathrm{1}}{{sinx}}\leqslant\frac{\mathrm{1}}{{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}\:\Rightarrow\:\mathrm{1}\leqslant\frac{{x}}{{sinx}}\leqslant\frac{\mathrm{1}}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}}\:\Rightarrow \\ $$$$\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{3}}\leqslant\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx}\:\leqslant\:\mathrm{6}\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\mathrm{6}−{x}^{\mathrm{2}} } \\ $$$${we}\:{have}\:\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\mathrm{6}−{x}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{6}}}\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}}{\sqrt{\mathrm{6}}−{x}}+\frac{\mathrm{1}}{\sqrt{\mathrm{6}}+{x}}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{6}}}\left[{ln}\mid\frac{\sqrt{\mathrm{6}}+{x}}{\sqrt{\mathrm{6}}−{x}}\mid\right]_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{6}}}\left\{\:{ln}\left(\frac{\sqrt{\mathrm{6}}+\frac{\pi}{\mathrm{2}}}{\sqrt{\mathrm{6}}−\frac{\pi}{\mathrm{2}}}\right)−{ln}\left(\frac{\sqrt{\mathrm{6}}+\frac{\pi}{\mathrm{3}}}{\sqrt{\mathrm{6}}−\frac{\pi}{\mathrm{3}}}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{6}}}\left\{{ln}\left(\frac{\mathrm{2}\sqrt{\mathrm{6}}+\pi}{\mathrm{2}\sqrt{\mathrm{6}}−\pi}\right)−{ln}\left(\frac{\mathrm{3}\sqrt{\mathrm{6}}+\pi}{\mathrm{3}\sqrt{\mathrm{6}}−\pi}\right)\right\}\:\Rightarrow \\ $$$$\frac{\pi}{\mathrm{6}}\leqslant\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx}\:\leqslant\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\left\{\:{ln}\left(\frac{\mathrm{2}\sqrt{\mathrm{6}}+\pi}{\mathrm{2}\sqrt{\mathrm{6}}−\pi}\right)−{ln}\left(\frac{\mathrm{3}\sqrt{\mathrm{6}}+\pi}{\mathrm{3}\sqrt{\mathrm{6}}−\pi}\right)\right\}\:{we}\:{can}\:{take} \\ $$$${v}_{\mathrm{0}} =\frac{\pi}{\mathrm{2}}\:+\frac{\sqrt{\mathrm{6}}}{\mathrm{4}}\left\{\:{ln}\left(\frac{\mathrm{2}\sqrt{\mathrm{6}}+\pi}{\mathrm{2}\sqrt{\mathrm{6}}−\pi}\right)−{ln}\left(\frac{\mathrm{3}\sqrt{\mathrm{6}}+\pi}{\mathrm{3}\sqrt{\mathrm{6}}−\pi}\right)\right\}\:{as}\:{a}\:{approximste}\:{value} \\ $$

Commented by mathmax by abdo last updated on 12/Apr/20

v_0 =(π/(12)) +((√6)/4){.....}

$${v}_{\mathrm{0}} =\frac{\pi}{\mathrm{12}}\:+\frac{\sqrt{\mathrm{6}}}{\mathrm{4}}\left\{.....\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com