All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 88422 by abdomathmax last updated on 10/Apr/20
calculate∫1∞dx(x+1)3(x2+1)2
Commented by mathmax by abdo last updated on 12/Apr/20
firstletfindI=∫dx(x+1)3(x2+1)2⇒I=∫dx(x+1)3(x−i)2(x+i)2=∫dx(x+1)3(x−ix+i)2(x+i)4changementx−ix+i=tgivex−i=tx+it⇒(1−t)x=i(1+t)x=i1+t1−t⇒dxdt=i×1−t+(1+t)(1−t)2=2i(t−1)2x+1=i+it1−t+1=i+it+1−t1−t=(−1+i)t+i+11−tx+i=i+it1−t+i=i+it+i−it1−t=2i1−t⇒=I=∫2idt(t−1)2((i−1)t+i+11−t)3t2(2i1−t)4=−1(2i)3∫(t−1)7dt(t−1)2{(i−1)t+i+1}3=18i∫(t−1)5{(i−1)t+i+1)3dt=18i(i−1)3∫(t−1)5(t+i+1i−1)3dt=18i(i−1)3∫(t−1)5(t−i)3dt⇒8i(i−1)3I=∫∑k=05C5ktk(−1)5−k(t−i)3dt=−∑k=05(−1)kC5k∫tk(t−i)3dt=−C50∫dt(t−i)3+C51∫t(t−i)3dt−C52∫t2(t−i)3dt+...+C55∫t5(t−i)3dt.....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com