Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 88423 by abdomathmax last updated on 10/Apr/20

solve (x^2 −1)y^(′′)  +(√x)y^′  =xe^(−x)

solve(x21)y+xy=xex

Commented by mathmax by abdo last updated on 12/Apr/20

let  y^′  =z   (e)⇒(x^2 −1)z^′  +(√x)z =xe^(−x)   (he)→(x^2 −1)z^′  +(√x)z =0 ⇒(x^2 −1)z^′  =−(√x)z ⇒  (z^′ /z) =−((√x)/(x^2 −1)) ⇒ln∣z∣ =−∫ ((√x)/(x^2 −1))dx  =−(1/2)∫ (√x)((1/(x−1))−(1/(x+1)))dx =(1/2)∫ (((√x)dx)/(x+1))−(1/2)∫ ((√x)/(x−1))dx  ∫((√x)/(x+1))dx =_((√x)=t)    ∫(t/(t^2  +1))(2t)dt =2 ∫((t^2  +1−1)/(t^2  +1))dt  =2t−2arctant +c_1 =2(√x)−2arctan((√x)) +c_1   ∫((√x)/(x−1))dx =_((√x)=t)   ∫ ((t(2t)dt)/(t^2 −1)) =2 ∫((t^2 −1+1)/(t^2 −1))dt  =2t+∫ ((2dt)/(t^2 −1)) =2t +∫ ((1/(t−1))−(1/(t+1)))dt  =2t+ln∣((t+1)/(t−1))∣ +c_2 =2(√x) +ln∣(((√x)+1)/((√x)−1))∣ +c_2  ⇒  ln∣z∣ =(√x)−artan((√x))−(√x)−(1/2)ln∣(((√x)+1)/((√x)−1))∣ +C ⇒  z =K  (e^(−arctan((√x))) /(√(∣(((√x)+1)/((√x)−1))∣))) let find solution on{ x/(((√x)+1)/((√x)−1))>0}  mvc method ⇒z^′  =K^′  (e^(−arctan((√x))) /(√(((√x)+1)/((√x)−1)))) +K ×((−(1/(2(√x)(1+x)))e^(−arctan((√x))) −e^(−arctan((√x))) ((((((√x)+1)/((√x)−1)))^′ )/(2(√(((√x)+1)/((√x)−1))))))/(((√x)+1)/((√x)−1)))  =K^′  (√(((√x)−1)/((√x)+1)))e^(−arctan((√x)))  +e^(−arctan((√x))) ×((((√(((√x)+1)/((√x)−1)))/((√x)(1+x)))−((((√x)+1)/((√x)−1)))^′ )/(4(√x)(1+x)(√(((√x)+1)/((√x)−1)))×(((√x)+1)/((√x)−1))))  ...be continued...

lety=z(e)(x21)z+xz=xex(he)(x21)z+xz=0(x21)z=xzzz=xx21lnz=xx21dx=12x(1x11x+1)dx=12xdxx+112xx1dxxx+1dx=x=ttt2+1(2t)dt=2t2+11t2+1dt=2t2arctant+c1=2x2arctan(x)+c1xx1dx=x=tt(2t)dtt21=2t21+1t21dt=2t+2dtt21=2t+(1t11t+1)dt=2t+lnt+1t1+c2=2x+lnx+1x1+c2lnz=xartan(x)x12lnx+1x1+Cz=Kearctan(x)x+1x1letfindsolutionon{x/x+1x1>0}mvcmethodz=Kearctan(x)x+1x1+K×12x(1+x)earctan(x)earctan(x)(x+1x1)2x+1x1x+1x1=Kx1x+1earctan(x)+earctan(x)×x+1x1x(1+x)(x+1x1)4x(1+x)x+1x1×x+1x1...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com