All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 88424 by abdomathmax last updated on 10/Apr/20
calculateUn=∫0∞arctan(n2x)−arctan(nx)xdxandxeterminenatureoftheserieΣUn
Commented by mathmax by abdo last updated on 11/Apr/20
letI(ξ)=∫0ξarctan(ax)−arctan(bx)xdx⇒I(ξ)=∫0ξarctan(ax)xdx−∫0ξarctan(bx)xdxbut∫0ξarctan(ax)xdx=ax=t∫0aξarctan(t)ta×dta=∫0aξarctan(t)tdtalso∫0ξarctan(bx)xdx=∫0bξarctan(t)tdt⇒I(ξ)=∫0aξarctanttdt+∫bξ0arctan(t)tdt=∫bξaξarctan(t)tdt∃c∈]bξ,aξ[/I(ξ)=arctan(ξ)∫bξaξdtt=arctan(ξ)ln∣ab∣⇒limξ→+∞I(ξ)=∫0∞arctan(ax)−arctan(bx)xdx=π2ln∣ab∣⇒Un=π2arctan(n2n)=π2arctan(n)wehavelimn→+∞Un=π24≠0⇒ΣUndiverges
Terms of Service
Privacy Policy
Contact: info@tinkutara.com