Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 88424 by abdomathmax last updated on 10/Apr/20

calculate U_n =∫_0 ^∞   ((arctan(n^2 x)−arctan(nx))/x)dx  and xetermine nature of the serie Σ U_n

calculateUn=0arctan(n2x)arctan(nx)xdxandxeterminenatureoftheserieΣUn

Commented by mathmax by abdo last updated on 11/Apr/20

let I(ξ) =∫_0 ^ξ  ((arctan(ax)−arctan(bx))/x)dx ⇒  I(ξ) =∫_0 ^ξ  ((arctan(ax))/x)dx−∫_0 ^ξ  ((arctan(bx))/x)dx but  ∫_0 ^ξ  ((arctan(ax))/x)dx =_(ax=t)    ∫_0 ^(aξ)  ((arctan(t))/(t/a))×(dt/a) =∫_0 ^(aξ)  ((arctan(t))/t)dt  also ∫_0 ^ξ  ((arctan(bx))/x)dx =∫_0 ^(bξ)  ((arctan(t))/t)dt ⇒  I(ξ) =∫_0 ^(aξ)  ((arctant)/t)dt+∫_(bξ) ^0  ((arctan(t))/t)dt =∫_(bξ) ^(aξ)  ((arctan(t))/t)dt  ∃c  ∈]bξ,aξ[  / I(ξ) =arctan(ξ)∫_(bξ) ^(aξ)  (dt/t) =arctan(ξ)ln∣(a/b)∣ ⇒  lim_(ξ→+∞)  I(ξ) =∫_0 ^∞  ((arctan(ax)−arctan(bx))/x)dx=(π/2)ln∣(a/b)∣  ⇒U_n =(π/2)arctan((n^2 /n)) =(π/2)arctan(n)  we have lim_(n→+∞)  U_n =(π^2 /4)  ≠0 ⇒Σ U_n  diverges

letI(ξ)=0ξarctan(ax)arctan(bx)xdxI(ξ)=0ξarctan(ax)xdx0ξarctan(bx)xdxbut0ξarctan(ax)xdx=ax=t0aξarctan(t)ta×dta=0aξarctan(t)tdtalso0ξarctan(bx)xdx=0bξarctan(t)tdtI(ξ)=0aξarctanttdt+bξ0arctan(t)tdt=bξaξarctan(t)tdtc]bξ,aξ[/I(ξ)=arctan(ξ)bξaξdtt=arctan(ξ)lnablimξ+I(ξ)=0arctan(ax)arctan(bx)xdx=π2lnabUn=π2arctan(n2n)=π2arctan(n)wehavelimn+Un=π240ΣUndiverges

Terms of Service

Privacy Policy

Contact: info@tinkutara.com