Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 88424 by abdomathmax last updated on 10/Apr/20

calculate U_n =∫_0 ^∞   ((arctan(n^2 x)−arctan(nx))/x)dx  and xetermine nature of the serie Σ U_n

$${calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({n}^{\mathrm{2}} {x}\right)−{arctan}\left({nx}\right)}{{x}}{dx} \\ $$$${and}\:{xetermine}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$

Commented by mathmax by abdo last updated on 11/Apr/20

let I(ξ) =∫_0 ^ξ  ((arctan(ax)−arctan(bx))/x)dx ⇒  I(ξ) =∫_0 ^ξ  ((arctan(ax))/x)dx−∫_0 ^ξ  ((arctan(bx))/x)dx but  ∫_0 ^ξ  ((arctan(ax))/x)dx =_(ax=t)    ∫_0 ^(aξ)  ((arctan(t))/(t/a))×(dt/a) =∫_0 ^(aξ)  ((arctan(t))/t)dt  also ∫_0 ^ξ  ((arctan(bx))/x)dx =∫_0 ^(bξ)  ((arctan(t))/t)dt ⇒  I(ξ) =∫_0 ^(aξ)  ((arctant)/t)dt+∫_(bξ) ^0  ((arctan(t))/t)dt =∫_(bξ) ^(aξ)  ((arctan(t))/t)dt  ∃c  ∈]bξ,aξ[  / I(ξ) =arctan(ξ)∫_(bξ) ^(aξ)  (dt/t) =arctan(ξ)ln∣(a/b)∣ ⇒  lim_(ξ→+∞)  I(ξ) =∫_0 ^∞  ((arctan(ax)−arctan(bx))/x)dx=(π/2)ln∣(a/b)∣  ⇒U_n =(π/2)arctan((n^2 /n)) =(π/2)arctan(n)  we have lim_(n→+∞)  U_n =(π^2 /4)  ≠0 ⇒Σ U_n  diverges

$${let}\:{I}\left(\xi\right)\:=\int_{\mathrm{0}} ^{\xi} \:\frac{{arctan}\left({ax}\right)−{arctan}\left({bx}\right)}{{x}}{dx}\:\Rightarrow \\ $$$${I}\left(\xi\right)\:=\int_{\mathrm{0}} ^{\xi} \:\frac{{arctan}\left({ax}\right)}{{x}}{dx}−\int_{\mathrm{0}} ^{\xi} \:\frac{{arctan}\left({bx}\right)}{{x}}{dx}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\xi} \:\frac{{arctan}\left({ax}\right)}{{x}}{dx}\:=_{{ax}={t}} \:\:\:\int_{\mathrm{0}} ^{{a}\xi} \:\frac{{arctan}\left({t}\right)}{\frac{{t}}{{a}}}×\frac{{dt}}{{a}}\:=\int_{\mathrm{0}} ^{{a}\xi} \:\frac{{arctan}\left({t}\right)}{{t}}{dt} \\ $$$${also}\:\int_{\mathrm{0}} ^{\xi} \:\frac{{arctan}\left({bx}\right)}{{x}}{dx}\:=\int_{\mathrm{0}} ^{{b}\xi} \:\frac{{arctan}\left({t}\right)}{{t}}{dt}\:\Rightarrow \\ $$$${I}\left(\xi\right)\:=\int_{\mathrm{0}} ^{{a}\xi} \:\frac{{arctant}}{{t}}{dt}+\int_{{b}\xi} ^{\mathrm{0}} \:\frac{{arctan}\left({t}\right)}{{t}}{dt}\:=\int_{{b}\xi} ^{{a}\xi} \:\frac{{arctan}\left({t}\right)}{{t}}{dt} \\ $$$$\left.\exists{c}\:\:\in\right]{b}\xi,{a}\xi\left[\:\:/\:{I}\left(\xi\right)\:={arctan}\left(\xi\right)\int_{{b}\xi} ^{{a}\xi} \:\frac{{dt}}{{t}}\:={arctan}\left(\xi\right){ln}\mid\frac{{a}}{{b}}\mid\:\Rightarrow\right. \\ $$$${lim}_{\xi\rightarrow+\infty} \:{I}\left(\xi\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({ax}\right)−{arctan}\left({bx}\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}{ln}\mid\frac{{a}}{{b}}\mid \\ $$$$\Rightarrow{U}_{{n}} =\frac{\pi}{\mathrm{2}}{arctan}\left(\frac{{n}^{\mathrm{2}} }{{n}}\right)\:=\frac{\pi}{\mathrm{2}}{arctan}\left({n}\right) \\ $$$${we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} =\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\:\neq\mathrm{0}\:\Rightarrow\Sigma\:{U}_{{n}} \:{diverges} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com