Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 88456 by ajfour last updated on 10/Apr/20

Commented by ajfour last updated on 11/Apr/20

Find s in terms   a and b.

$${Find}\:{s}\:{in}\:{terms}\:\:\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}. \\ $$

Commented by Tony Lin last updated on 11/Apr/20

Commented by Tony Lin last updated on 11/Apr/20

k=scosθ,h=ssinθ   [((cos(−60°)),(−sin(−60°))),((sin(−60°)),(cos(−60°))) ] [((−k)),(h) ]  = [((((√3)h−k)/2)),((((√3)k+h)/2)) ]  P=((((√3)h−k)/2)+k, (((√3)k+h)/2))  =((((√3)h+k)/2), (((√3)k+h)/2))  (x^2 /a^2 )+(y^2 /b^2 )=1  ((((((√3)h+k)/2))^2 )/a^2 )+((((((√3)k+h)/2))^2 )/b^2 )=1  k^2 (b^2 +3a^2 )+h^2 (a^2 +3b^2 )+2(√3)hk(a^2 +b^2 )  s^2 [cos^2 θ(b^2 +3a^2 )+sin^2 θ(a^2 +3b^2 )+(√3)sin2θ(a^2 +b^2 )  =4a^2 b^2   s=(√((4a^2 b^2 )/(cos^2 θ(b^2 +3a^2 )+sin^2 θ(a^2 +3b^2 )+(√3)sin2θ(a^2 +b^2 ))))

$${k}={scos}\theta,{h}={ssin}\theta \\ $$$$\begin{bmatrix}{{cos}\left(−\mathrm{60}°\right)}&{−{sin}\left(−\mathrm{60}°\right)}\\{{sin}\left(−\mathrm{60}°\right)}&{{cos}\left(−\mathrm{60}°\right)}\end{bmatrix}\begin{bmatrix}{−{k}}\\{{h}}\end{bmatrix} \\ $$$$=\begin{bmatrix}{\frac{\sqrt{\mathrm{3}}{h}−{k}}{\mathrm{2}}}\\{\frac{\sqrt{\mathrm{3}}{k}+{h}}{\mathrm{2}}}\end{bmatrix} \\ $$$${P}=\left(\frac{\sqrt{\mathrm{3}}{h}−{k}}{\mathrm{2}}+{k},\:\frac{\sqrt{\mathrm{3}}{k}+{h}}{\mathrm{2}}\right) \\ $$$$=\left(\frac{\sqrt{\mathrm{3}}{h}+{k}}{\mathrm{2}},\:\frac{\sqrt{\mathrm{3}}{k}+{h}}{\mathrm{2}}\right) \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\left(\frac{\sqrt{\mathrm{3}}{h}+{k}}{\mathrm{2}}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left(\frac{\sqrt{\mathrm{3}}{k}+{h}}{\mathrm{2}}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${k}^{\mathrm{2}} \left({b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} \right)+{h}^{\mathrm{2}} \left({a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} \right)+\mathrm{2}\sqrt{\mathrm{3}}{hk}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$$${s}^{\mathrm{2}} \left[{cos}^{\mathrm{2}} \theta\left({b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} \right)+{sin}^{\mathrm{2}} \theta\left({a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} \right)+\sqrt{\mathrm{3}}{sin}\mathrm{2}\theta\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\right. \\ $$$$=\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$${s}=\sqrt{\frac{\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{cos}^{\mathrm{2}} \theta\left({b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} \right)+{sin}^{\mathrm{2}} \theta\left({a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} \right)+\sqrt{\mathrm{3}}{sin}\mathrm{2}\theta\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}} \\ $$

Commented by ajfour last updated on 11/Apr/20

Thank you, Tony Sir!  Nice solution.

$${Thank}\:{you},\:{Tony}\:{Sir}! \\ $$$$\mathcal{N}{ice}\:{solution}. \\ $$

Answered by mr W last updated on 11/Apr/20

Commented by mr W last updated on 11/Apr/20

y_Q =s sin θ  x_P =s cos ((π/3)−θ)=(s/2)(cos θ+(√3) sin θ)  y_P =s[sin θ+sin ((π/3)−θ)]=(s/2)(sin θ+(√3) cos θ)  b^2 x_P ^2 +a^2 y_P ^2 =a^2 b^2   (s^2 /4)[b^2 (cos θ+(√3) sin θ)^2 +a^2 (sin θ+(√3) cos θ)^2 ]=a^2 b^2   s^2 [b^2 (cos^2  θ+2(√3) sin θ cos θ+3 cos^2  θ)+a^2 (sin^2  θ+2(√3) sin θcos θ+3 sin^2  θ)]=4a^2 b^2   s^2 [(√3)(a^2 + b^2 ) sin 2θ+(a^2 +3b^2 ) sin^2  θ+(3a^2 +b^2 ) cos^2  θ)]=4a^2 b^2   with μ=(b/a)  P=((4b^2 )/s^2 )=(√3)(1+ μ^2 ) sin 2θ+(1+3μ^2 ) sin^2  θ+(3+μ^2 ) cos^2  θ  P=((4b^2 )/s^2 )=2(1+μ^2 )+(√3)(1+ μ^2 ) sin 2θ+(1−μ^2 )cos 2θ  (dP/dθ)=2(√3)(1+ μ^2 ) cos 2θ−2(1−μ^2 ) sin 2θ=0  ⇒tan 2θ=(((1+μ^2 )(√3))/(1−μ^2 ))  ⇒sin 2θ=(((1+μ^2 )(√3))/(2(√(1+μ^2 +μ^4 ))))  ⇒cos 2θ=((1−μ^2 )/(2(√(1+μ^2 +μ^4 ))))  ((4b^2 )/s_(min) ^2 )=2(1+μ^2 )+(√3)(1+ μ^2 )(((1+μ^2 )(√3))/(2(√(1+μ^2 +μ^4 ))))+(1−μ^2 )((1−μ^2 )/(2(√(1+μ^2 +μ^4 ))))  ((2b^2 )/s_(min) ^2 )=1+μ^2 +(√(1+μ^2 +μ^4 ))  ⇒s_(min) =(((√2)b)/(√(1+μ^2 +(√(1+μ^2 +μ^4 )))))    example: a=4, b=3, μ=(3/4)  ⇒s_(min) =((√(50−2(√(481))))/3)×b=(√(50−2(√(481))))=2.477

$${y}_{{Q}} ={s}\:\mathrm{sin}\:\theta \\ $$$${x}_{{P}} ={s}\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{3}}−\theta\right)=\frac{{s}}{\mathrm{2}}\left(\mathrm{cos}\:\theta+\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\right) \\ $$$${y}_{{P}} ={s}\left[\mathrm{sin}\:\theta+\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}−\theta\right)\right]=\frac{{s}}{\mathrm{2}}\left(\mathrm{sin}\:\theta+\sqrt{\mathrm{3}}\:\mathrm{cos}\:\theta\right) \\ $$$${b}^{\mathrm{2}} {x}_{{P}} ^{\mathrm{2}} +{a}^{\mathrm{2}} {y}_{{P}} ^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\frac{{s}^{\mathrm{2}} }{\mathrm{4}}\left[{b}^{\mathrm{2}} \left(\mathrm{cos}\:\theta+\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} +{a}^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\sqrt{\mathrm{3}}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} \right]={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$${s}^{\mathrm{2}} \left[{b}^{\mathrm{2}} \left(\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta+\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:\theta\right)+{a}^{\mathrm{2}} \left(\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\mathrm{cos}\:\theta+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta\right)\right]=\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\left.{s}^{\mathrm{2}} \left[\sqrt{\mathrm{3}}\left({a}^{\mathrm{2}} +\:{b}^{\mathrm{2}} \right)\:\mathrm{sin}\:\mathrm{2}\theta+\left({a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} \right)\:\mathrm{sin}^{\mathrm{2}} \:\theta+\left(\mathrm{3}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\:\mathrm{cos}^{\mathrm{2}} \:\theta\right)\right]=\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$${with}\:\mu=\frac{{b}}{{a}} \\ $$$${P}=\frac{\mathrm{4}{b}^{\mathrm{2}} }{{s}^{\mathrm{2}} }=\sqrt{\mathrm{3}}\left(\mathrm{1}+\:\mu^{\mathrm{2}} \right)\:\mathrm{sin}\:\mathrm{2}\theta+\left(\mathrm{1}+\mathrm{3}\mu^{\mathrm{2}} \right)\:\mathrm{sin}^{\mathrm{2}} \:\theta+\left(\mathrm{3}+\mu^{\mathrm{2}} \right)\:\mathrm{cos}^{\mathrm{2}} \:\theta \\ $$$${P}=\frac{\mathrm{4}{b}^{\mathrm{2}} }{{s}^{\mathrm{2}} }=\mathrm{2}\left(\mathrm{1}+\mu^{\mathrm{2}} \right)+\sqrt{\mathrm{3}}\left(\mathrm{1}+\:\mu^{\mathrm{2}} \right)\:\mathrm{sin}\:\mathrm{2}\theta+\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\frac{{dP}}{{d}\theta}=\mathrm{2}\sqrt{\mathrm{3}}\left(\mathrm{1}+\:\mu^{\mathrm{2}} \right)\:\mathrm{cos}\:\mathrm{2}\theta−\mathrm{2}\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\:\mathrm{sin}\:\mathrm{2}\theta=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}\:\mathrm{2}\theta=\frac{\left(\mathrm{1}+\mu^{\mathrm{2}} \right)\sqrt{\mathrm{3}}}{\mathrm{1}−\mu^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{sin}\:\mathrm{2}\theta=\frac{\left(\mathrm{1}+\mu^{\mathrm{2}} \right)\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{1}+\mu^{\mathrm{2}} +\mu^{\mathrm{4}} }} \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{2}\theta=\frac{\mathrm{1}−\mu^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{1}+\mu^{\mathrm{2}} +\mu^{\mathrm{4}} }} \\ $$$$\frac{\mathrm{4}{b}^{\mathrm{2}} }{{s}_{{min}} ^{\mathrm{2}} }=\mathrm{2}\left(\mathrm{1}+\mu^{\mathrm{2}} \right)+\sqrt{\mathrm{3}}\left(\mathrm{1}+\:\mu^{\mathrm{2}} \right)\frac{\left(\mathrm{1}+\mu^{\mathrm{2}} \right)\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{1}+\mu^{\mathrm{2}} +\mu^{\mathrm{4}} }}+\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\frac{\mathrm{1}−\mu^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{1}+\mu^{\mathrm{2}} +\mu^{\mathrm{4}} }} \\ $$$$\frac{\mathrm{2}{b}^{\mathrm{2}} }{{s}_{{min}} ^{\mathrm{2}} }=\mathrm{1}+\mu^{\mathrm{2}} +\sqrt{\mathrm{1}+\mu^{\mathrm{2}} +\mu^{\mathrm{4}} } \\ $$$$\Rightarrow{s}_{{min}} =\frac{\sqrt{\mathrm{2}}{b}}{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} +\sqrt{\mathrm{1}+\mu^{\mathrm{2}} +\mu^{\mathrm{4}} }}} \\ $$$$ \\ $$$${example}:\:{a}=\mathrm{4},\:{b}=\mathrm{3},\:\mu=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow{s}_{{min}} =\frac{\sqrt{\mathrm{50}−\mathrm{2}\sqrt{\mathrm{481}}}}{\mathrm{3}}×{b}=\sqrt{\mathrm{50}−\mathrm{2}\sqrt{\mathrm{481}}}=\mathrm{2}.\mathrm{477} \\ $$

Commented by ajfour last updated on 11/Apr/20

Sir, how did you know, with  dP/dθ =0,  we get  s_(max)  or s_(min) ?

$${Sir},\:{how}\:{did}\:{you}\:{know},\:{with}\:\:{dP}/{d}\theta\:=\mathrm{0}, \\ $$$${we}\:{get}\:\:{s}_{{max}} \:{or}\:{s}_{{min}} ? \\ $$

Commented by mr W last updated on 11/Apr/20

Commented by mr W last updated on 11/Apr/20

there are infinite equilateral triangles,  (dP/dθ)=0 for max. P which leads to s_(min.)

$${there}\:{are}\:{infinite}\:{equilateral}\:{triangles}, \\ $$$$\frac{{dP}}{{d}\theta}=\mathrm{0}\:{for}\:{max}.\:{P}\:{which}\:{leads}\:{to}\:{s}_{{min}.} \\ $$

Commented by ajfour last updated on 11/Apr/20

Sir, can you please compare this  image with that for s_(max)  ?

$${Sir},\:{can}\:{you}\:{please}\:{compare}\:{this} \\ $$$${image}\:{with}\:{that}\:{for}\:{s}_{{max}} \:? \\ $$

Commented by mr W last updated on 11/Apr/20

from  P=((4b^2 )/s^2 )=2(1+μ^2 )+(√3)(1+ μ^2 ) sin 2θ+(1−μ^2 )cos 2θ  we see it can be formed to  P=A+B sin 2θ+C cos 2θ=A+(√(B^2 +C^2 )) cos (2θ−φ)  it reaches max. (i.e. s_(min) ) at 2θ=φ  but its min. (i.e. s_(max) ) is at 2θ=φ±π  which lies behind our valid range.  the real s_(max)  is on the border of our  valid range.

$${from} \\ $$$${P}=\frac{\mathrm{4}{b}^{\mathrm{2}} }{{s}^{\mathrm{2}} }=\mathrm{2}\left(\mathrm{1}+\mu^{\mathrm{2}} \right)+\sqrt{\mathrm{3}}\left(\mathrm{1}+\:\mu^{\mathrm{2}} \right)\:\mathrm{sin}\:\mathrm{2}\theta+\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{cos}\:\mathrm{2}\theta \\ $$$${we}\:{see}\:{it}\:{can}\:{be}\:{formed}\:{to} \\ $$$${P}={A}+{B}\:\mathrm{sin}\:\mathrm{2}\theta+{C}\:\mathrm{cos}\:\mathrm{2}\theta={A}+\sqrt{{B}^{\mathrm{2}} +{C}^{\mathrm{2}} }\:\mathrm{cos}\:\left(\mathrm{2}\theta−\phi\right) \\ $$$${it}\:{reaches}\:{max}.\:\left({i}.{e}.\:{s}_{{min}} \right)\:{at}\:\mathrm{2}\theta=\phi \\ $$$${but}\:{its}\:{min}.\:\left({i}.{e}.\:{s}_{{max}} \right)\:{is}\:{at}\:\mathrm{2}\theta=\phi\pm\pi \\ $$$${which}\:{lies}\:{behind}\:{our}\:{valid}\:{range}. \\ $$$${the}\:{real}\:{s}_{{max}} \:{is}\:{on}\:{the}\:{border}\:{of}\:{our} \\ $$$${valid}\:{range}. \\ $$

Commented by mr W last updated on 11/Apr/20

Commented by mr W last updated on 11/Apr/20

Commented by mr W last updated on 11/Apr/20

since point Q is restricted from (0,0)  to (0,b) we can′t get the mathematical  maximum s_(max) . the actual s_(max)  is  one of the two cases above: Q at (0,0)  or Q at (0,b).  but s_(min)  is between both cases,   corresponds to (dP/dθ)=0.

$${since}\:{point}\:{Q}\:{is}\:{restricted}\:{from}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$$${to}\:\left(\mathrm{0},{b}\right)\:{we}\:{can}'{t}\:{get}\:{the}\:{mathematical} \\ $$$${maximum}\:{s}_{{max}} .\:{the}\:{actual}\:{s}_{{max}} \:{is} \\ $$$${one}\:{of}\:{the}\:{two}\:{cases}\:{above}:\:{Q}\:{at}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$$${or}\:{Q}\:{at}\:\left(\mathrm{0},{b}\right). \\ $$$${but}\:{s}_{{min}} \:{is}\:{between}\:{both}\:{cases},\: \\ $$$${corresponds}\:{to}\:\frac{{dP}}{{d}\theta}=\mathrm{0}. \\ $$

Commented by ajfour last updated on 11/Apr/20

Thank you Sir!    For a=4, b=3_(−)   this means for θ=0 we have  s_(max)  & at some intermediate θ=α,  as shown in main solution we  have s_(min)  , and θ_(max)  = β (say)  α< β <(π/2) .  Complete Treatment Sir!  thanks a lot again.

$${Thank}\:{you}\:{Sir}!\:\: \\ $$$$\underset{−} {{For}\:{a}=\mathrm{4},\:{b}=\mathrm{3}} \\ $$$${this}\:{means}\:{for}\:\theta=\mathrm{0}\:{we}\:{have} \\ $$$${s}_{{max}} \:\&\:{at}\:{some}\:{intermediate}\:\theta=\alpha, \\ $$$${as}\:{shown}\:{in}\:{main}\:{solution}\:{we} \\ $$$${have}\:{s}_{{min}} \:,\:{and}\:\theta_{{max}} \:=\:\beta\:\left({say}\right) \\ $$$$\alpha<\:\beta\:<\frac{\pi}{\mathrm{2}}\:. \\ $$$$\mathcal{C}{omplete}\:\mathcal{T}{reatment}\:{Sir}! \\ $$$${thanks}\:{a}\:{lot}\:{again}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com