Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88490 by M±th+et£s last updated on 11/Apr/20

∫_1 ^∞  (x^4 /4^x )dx=?

1x44xdx=?

Commented by jagoll last updated on 11/Apr/20

Commented by Ar Brandon last updated on 11/Apr/20

cool!

cool!

Commented by M±th+et£s last updated on 11/Apr/20

thanx sir

thanxsir

Commented by mathmax by abdo last updated on 11/Apr/20

I =∫_1 ^∞  (x^4 /4^x )dx ⇒ I =∫_1 ^(+∞)  x^4  4^(−x)  dx we do the changement  4^(−x)  =t ⇒e^(−xln(4))  =t ⇒−xln(4) =ln(t) ⇒x =−((ln(t))/(2ln(2))) ⇒  I =−(1/(2ln2))∫_(1/4) ^0  (((lnt)^4 )/(4ln^4 (2))) ×t×(dt/t)  =(1/(8ln^5 (2))) ∫_0 ^(1/4)  ln^4 (t)dt    let u_n =∫ ln^n (t)dt by parts   u_n = t ln^n (t)−∫ t n(lnt)^(n−1)  (dt/t) =t ln^n (t)−n u_(n−1)   ⇒u_4 = t ln^4 (t)−4 u_3 =t ln^4 (t)−4( t ln^3 (t)−3 u_2 )  =t ln^4 (t)−4t ln^3 (t)+12 (t ln^2 (t)−2u_1 )  =t ln^4 (t)−4t ln^3 (t)+12 t ln^2 (t)−24 (t lnt−t) ⇒  ∫_0 ^(1/4)  ln^4 (t)dt =[t ln^4 (t)−4t ln^3 (t)+12tln^2 (t)−24t ln(t)+24t]_0 ^(1/4)   rest to finish the calculus...

I=1x44xdxI=1+x44xdxwedothechangement4x=texln(4)=txln(4)=ln(t)x=ln(t)2ln(2)I=12ln2140(lnt)44ln4(2)×t×dtt=18ln5(2)014ln4(t)dtletun=lnn(t)dtbypartsun=tlnn(t)tn(lnt)n1dtt=tlnn(t)nun1u4=tln4(t)4u3=tln4(t)4(tln3(t)3u2)=tln4(t)4tln3(t)+12(tln2(t)2u1)=tln4(t)4tln3(t)+12tln2(t)24(tlntt)014ln4(t)dt=[tln4(t)4tln3(t)+12tln2(t)24tln(t)+24t]014resttofinishthecalculus...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com