Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 88491 by M±th+et£s last updated on 11/Apr/20

solve  cos(x)=k

solvecos(x)=k

Answered by mr W last updated on 11/Apr/20

if ∣k∣≤1:  ⇒x=2nπ±cos^(−1) k (=real number)    if ∣k∣>1:  cos x+i sin x=e^(ix)   cos x−i sin x=e^(−ix)   2 cos x=e^(ix) +e^(−ix)   let t=e^(ix)   2k=t+(1/t)  t^2 −2kt+1=0  t=k±(√(k^2 −1))  e^(ix) =k±(√(k^2 −1))  ix=ln (k±(√(k^2 −1)))  x=−i ln (k±(√(k^2 −1)))  ⇒x=±i ln (k+(√(k^2 −1))) (=imaginary)

ifk∣⩽1:x=2nπ±cos1k(=realnumber)ifk∣>1:cosx+isinx=eixcosxisinx=eix2cosx=eix+eixlett=eix2k=t+1tt22kt+1=0t=k±k21eix=k±k21ix=ln(k±k21)x=iln(k±k21)x=±iln(k+k21)(=imaginary)

Commented by M±th+et£s last updated on 11/Apr/20

thank you sir. but how can we get x=2nπ±cos^(−1) (k)

thankyousir.buthowcanwegetx=2nπ±cos1(k)

Commented by Kunal12588 last updated on 11/Apr/20

genral solution of  cos x = m ; m∈[−1,1]    is   x=2nπ±cos^(−1) m ;  n∈Z

genralsolutionofcosx=m;m[1,1]isx=2nπ±cos1m;nZ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com