Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 88492 by jagoll last updated on 11/Apr/20

y′′ −4y′+5y = 1+8cos x+e^(2x)

$$\mathrm{y}''\:−\mathrm{4y}'+\mathrm{5y}\:=\:\mathrm{1}+\mathrm{8cos}\:\mathrm{x}+\mathrm{e}^{\mathrm{2x}} \\ $$

Commented by niroj last updated on 11/Apr/20

  (d^2 y/dx^2 )−4(dy/dx)+5y= 1+8cos x+e^(2x)     (D^2 −4D+5)y= 1+8cos x +e^(2x)     Auxilairy Equation,    m^2 −4m+5=0    m= ((−(−4)+^− (√((−4)^2 −4.1.5)))/(2.1))     m= ((4+^− (√(16−20)))/2)= ((4+^− (√(−4)))/2)    = 2+^− ((2i)/2)=2+^− 1i    CF= e^(2x) (C_1 cos x+C_2 sin x)    PI= ((1+8cos x+e^(2x) )/(D^2 −4D+5))     = (1/(D^2 −4D+5))+ ((8 cos x)/(D^2 −4D+5))+ (e^(2x) /(D^2 −4D+5))   = (e^(0.x) /(D^2 −4D+5)) + ((8cos x)/(−1−4D+5))+ (e^(2x) /(D^2 −4D+5))  =  (e^(0.x) /((0)^2 −4.0+5)) + ((8 cos x)/(−4D+4))+ (e^(2x) /((2)^2 −4.2+5))  = (1/5)− (8/4).((cos x)/((D−1)))+ (e^(2x) /(4−8+5))  = (1/5)−((2(D+1)cos x)/((D^2 −1))) + (e^(2x) /1)  = (1/5) − ((2(D+1)x cos x)/((−1−1)))+ e^(2x)   = (1/5)− ((2(D+1)cos x)/(−2))+e^(2x)   = (1/5)+(((D+1)cos x)/1)+e^(2x)   = (1/5)+(−sin x+cos x) +e^(2x)    y= CF+PI    y= e^(2x) (C_1 cos x+C_2 sinx)+(1/5)−sin x+cosx +e^(2x) .

$$\:\:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }−\mathrm{4}\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}+\mathrm{5}\boldsymbol{\mathrm{y}}=\:\mathrm{1}+\mathrm{8}\boldsymbol{\mathrm{cos}}\:\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{e}}^{\mathrm{2}\boldsymbol{\mathrm{x}}} \\ $$$$\:\:\left(\mathrm{D}^{\mathrm{2}} −\mathrm{4D}+\mathrm{5}\right)\mathrm{y}=\:\mathrm{1}+\mathrm{8cos}\:\mathrm{x}\:+\mathrm{e}^{\mathrm{2x}} \\ $$$$\:\:\mathrm{Auxilairy}\:\mathrm{Equation}, \\ $$$$\:\:\mathrm{m}^{\mathrm{2}} −\mathrm{4m}+\mathrm{5}=\mathrm{0} \\ $$$$\:\:\mathrm{m}=\:\frac{−\left(−\mathrm{4}\right)\overset{−} {+}\sqrt{\left(−\mathrm{4}\right)^{\mathrm{2}} −\mathrm{4}.\mathrm{1}.\mathrm{5}}}{\mathrm{2}.\mathrm{1}} \\ $$$$\:\:\:\mathrm{m}=\:\frac{\mathrm{4}\overset{−} {+}\sqrt{\mathrm{16}−\mathrm{20}}}{\mathrm{2}}=\:\frac{\mathrm{4}\overset{−} {+}\sqrt{−\mathrm{4}}}{\mathrm{2}} \\ $$$$\:\:=\:\mathrm{2}\overset{−} {+}\frac{\mathrm{2}{i}}{\mathrm{2}}=\mathrm{2}\overset{−} {+}\mathrm{1}{i} \\ $$$$\:\:\mathrm{CF}=\:\mathrm{e}^{\mathrm{2x}} \left(\mathrm{C}_{\mathrm{1}} \mathrm{cos}\:\mathrm{x}+\mathrm{C}_{\mathrm{2}} \mathrm{sin}\:\mathrm{x}\right) \\ $$$$\:\:\mathrm{PI}=\:\frac{\mathrm{1}+\mathrm{8cos}\:\mathrm{x}+\mathrm{e}^{\mathrm{2x}} }{\mathrm{D}^{\mathrm{2}} −\mathrm{4D}+\mathrm{5}} \\ $$$$\:\:\:=\:\frac{\mathrm{1}}{\mathrm{D}^{\mathrm{2}} −\mathrm{4D}+\mathrm{5}}+\:\frac{\mathrm{8}\:\mathrm{cos}\:\mathrm{x}}{\mathrm{D}^{\mathrm{2}} −\mathrm{4D}+\mathrm{5}}+\:\frac{\mathrm{e}^{\mathrm{2x}} }{\mathrm{D}^{\mathrm{2}} −\mathrm{4D}+\mathrm{5}} \\ $$$$\:=\:\frac{\mathrm{e}^{\mathrm{0}.\mathrm{x}} }{\mathrm{D}^{\mathrm{2}} −\mathrm{4D}+\mathrm{5}}\:+\:\frac{\mathrm{8cos}\:\mathrm{x}}{−\mathrm{1}−\mathrm{4D}+\mathrm{5}}+\:\frac{\mathrm{e}^{\mathrm{2x}} }{\mathrm{D}^{\mathrm{2}} −\mathrm{4D}+\mathrm{5}} \\ $$$$=\:\:\frac{\mathrm{e}^{\mathrm{0}.\mathrm{x}} }{\left(\mathrm{0}\right)^{\mathrm{2}} −\mathrm{4}.\mathrm{0}+\mathrm{5}}\:+\:\frac{\mathrm{8}\:\mathrm{cos}\:\mathrm{x}}{−\mathrm{4D}+\mathrm{4}}+\:\frac{\mathrm{e}^{\mathrm{2x}} }{\left(\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}.\mathrm{2}+\mathrm{5}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{5}}−\:\frac{\mathrm{8}}{\mathrm{4}}.\frac{\mathrm{cos}\:\mathrm{x}}{\left(\mathrm{D}−\mathrm{1}\right)}+\:\frac{\mathrm{e}^{\mathrm{2x}} }{\mathrm{4}−\mathrm{8}+\mathrm{5}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{2}\left(\mathrm{D}+\mathrm{1}\right)\mathrm{cos}\:\mathrm{x}}{\left(\mathrm{D}^{\mathrm{2}} −\mathrm{1}\right)}\:+\:\frac{\mathrm{e}^{\mathrm{2x}} }{\mathrm{1}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{5}}\:−\:\frac{\mathrm{2}\left(\mathrm{D}+\mathrm{1}\right)\mathrm{x}\:\mathrm{cos}\:\mathrm{x}}{\left(−\mathrm{1}−\mathrm{1}\right)}+\:\mathrm{e}^{\mathrm{2x}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{5}}−\:\frac{\mathrm{2}\left(\mathrm{D}+\mathrm{1}\right)\mathrm{cos}\:\mathrm{x}}{−\mathrm{2}}+\mathrm{e}^{\mathrm{2x}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{5}}+\frac{\left(\mathrm{D}+\mathrm{1}\right)\mathrm{cos}\:\mathrm{x}}{\mathrm{1}}+\mathrm{e}^{\mathrm{2x}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{5}}+\left(−\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)\:+\mathrm{e}^{\mathrm{2x}} \\ $$$$\:\mathrm{y}=\:\mathrm{CF}+\mathrm{PI} \\ $$$$\:\:\mathrm{y}=\:\mathrm{e}^{\mathrm{2x}} \left(\mathrm{C}_{\mathrm{1}} \mathrm{cos}\:\mathrm{x}+\mathrm{C}_{\mathrm{2}} \mathrm{sinx}\right)+\frac{\mathrm{1}}{\mathrm{5}}−\mathrm{sin}\:\mathrm{x}+\mathrm{cosx}\:+\mathrm{e}^{\mathrm{2x}} . \\ $$

Commented by jagoll last updated on 11/Apr/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by peter frank last updated on 11/Apr/20

thank you

$${thank}\:{you} \\ $$

Commented by peter frank last updated on 11/Apr/20

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com