Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 88525 by jagoll last updated on 11/Apr/20

Commented by jagoll last updated on 11/Apr/20

i got 20^o

igot20o

Commented by mr W last updated on 11/Apr/20

x=80°

x=80°

Commented by jagoll last updated on 11/Apr/20

why?

why?

Commented by mahdi last updated on 11/Apr/20

in ΔAOC:((sinx)/(AO))=((sin20)/(OC))  in ΔOBC:((sin(110−x))/(OB))=((sin10)/(OC))  ⇒((sinx)/(AO))=((sin20)/((OB.sin10)/(sin(110−x))))⇒(OB=OA=r)  ((sinx)/(sin(110−x)))=((sin20)/(sin10))=2cos10=((sin80)/(sin30))  ⇒x=80

inΔAOC:sinxAO=sin20OCinΔOBC:sin(110x)OB=sin10OCsinxAO=sin20OB.sin10sin(110x)(OB=OA=r)sinxsin(110x)=sin20sin10=2cos10=sin80sin30x=80

Commented by jagoll last updated on 11/Apr/20

thank you sir.

thankyousir.

Commented by jagoll last updated on 11/Apr/20

sir. how to get 110−x ? sir

sir.howtoget110x?sir

Answered by mr W last updated on 11/Apr/20

Commented by mr W last updated on 11/Apr/20

((AD)/(sin 70))=((CA)/(sin 110))=((CA)/(cos 20))  ((CA)/(sin 30))=((AB)/(sin 70))  AB=2 OA cos 20    AD=((sin 70)/(cos 20))×CA=((sin 70)/(cos 20))×((sin 30)/(sin 70))×AB  =((sin 70)/(cos 20))×((sin 30)/(sin 70))×2 cos 20×OA  =2 sin 30×OA  =OA  ⇒ΔOAD=isosceles  ⇒x=((180−20)/2)=80°

ADsin70=CAsin110=CAcos20CAsin30=ABsin70AB=2OAcos20AD=sin70cos20×CA=sin70cos20×sin30sin70×AB=sin70cos20×sin30sin70×2cos20×OA=2sin30×OA=OAΔOAD=isoscelesx=180202=80°

Commented by mr W last updated on 11/Apr/20

sorry, ∠ADC=70°  110=70+40

sorry,ADC=70°110=70+40

Commented by jagoll last updated on 11/Apr/20

sir W. if ∠ACD = 70^o   ∠ADC = 110^o   ∠CAD = 40^0   how it? 70^o +110^0 +40^o  > 180^o

sirW.ifACD=70oADC=110oCAD=400howit?70o+1100+40o>180o

Commented by jagoll last updated on 11/Apr/20

thank you sir

thankyousir

Commented by jagoll last updated on 11/Apr/20

Commented by jagoll last updated on 11/Apr/20

like this?

likethis?

Commented by mr W last updated on 11/Apr/20

Commented by jagoll last updated on 11/Apr/20

ok sir. thank you

oksir.thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com