All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 88547 by ajfour last updated on 11/Apr/20
provefor(0<a<2) ∫0∞xa−1dx1+x+x2=2π3cos(2πa+π6)cosecπa.
Answered by mind is power last updated on 12/Apr/20
∫−∞+∞xa−11+x+x2dx=∫0∞xa−1dx1+x+x2+∫0+∞(−1)a−1xa−11−x+x2dx =∫CRxa−11+x+x2dx⩽∫0πRaei(a−1)πR2−R+1→0 ⇒∫0+∞eiπ(a−1)xa−1x2−x+1dx+∫0∞xa−1dxx2+x+1=2iπRes(za−1z2+z+1,ei2π3) =2iπei(a−1)2π3(3e2iπ3+1)=−isin(πa)∫0∞xa−1dxx2−x+1+−cos(πa)∫0+∞xa−1dxx2−x+1 +∫0∞xa−1dxx2+x+1 2iπei(a−1)2π32(−12+i32)+1=2iπei(a−1)2π3i3=2π3(cos(2π(a−1)3)+isin(2π(a−1)3)) =−isin(πa)∫0∞xa−1dxx2−x+1−cos(πa)∫0∞xa−1dxx2−x+1+∫0+∞xa−1dxx2+x+1 ⇒2iπ3sin(2π(a−1)3)=−isin(πa)∫0+∞xa−1dxx2−x+1 ⇒∫0+∞xa−1dxx2−x+1=−2πsin(2π(a−1)3)sin(πa)3 ∫0+∞xa−1dxx2+x+1=2π3cos(2π(a−1)3)+−2πsin(2π(a−1)3)cos(πa)sin(πa)3 =2π3.1sin(πa){cos(2π(a−1)3)sin(πa)−sin(2π(a−1)3)cos(πa)) =2πsin(πa)3{sin(πa−2π(a−1)3)} =2π3sin(πa){sin(πa3+2π3)} =2πsin(πa)3cos(π2−πa3−2π3)=2πsin(πa)3(cos(−πa3−π6)) =2πsin(πa)3cos(2πa+π6)=2π3cos(2πa+π6)cosec(πa)
Commented byajfour last updated on 12/Apr/20
Thankyousir,hopeyouliked solvingit.
Commented bymind is power last updated on 12/Apr/20
niceoneSir since4or5monthagoilostmymotivation lostpleasurofsolvingproblemesidontknowwhy!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com