Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88547 by ajfour last updated on 11/Apr/20

prove for (0<a<2)  ∫_0 ^( ∞) ((x^(a−1) dx)/(1+x+x^2 )) = ((2π)/(√3))cos (((2πa+π)/6))cosec πa .

provefor(0<a<2) 0xa1dx1+x+x2=2π3cos(2πa+π6)cosecπa.

Answered by mind is power last updated on 12/Apr/20

∫_(−∞) ^(+∞) (x^(a−1) /(1+x+x^2 ))dx=∫_0 ^∞ ((x^(a−1) dx)/(1+x+x^2 ))+∫_0 ^(+∞) (((−1)^(a−1) x^(a−1) )/(1−x+x^2 ))dx  =∫_C_R  (x^(a−1) /(1+x+x^2 ))dx≤∫_0 ^π ((R^a e^(i(a−1)π) )/(R^2 −R+1))→0  ⇒∫_0 ^(+∞) ((e^(iπ(a−1)) x^(a−1) )/(x^2 −x+1))dx+∫_0 ^∞ ((x^(a−1) dx)/(x^2 +x+1))=2iπRes((z^(a−1) /(z^2 +z+1)),e^(i((2π)/3)) )  =((2iπe^(i(a−1)((2π)/3)) )/((3e^((2iπ)/3) +1)))=−isin(πa)∫_0 ^∞ ((x^(a−1) dx)/(x^2 −x+1))+−cos(πa)∫_0 ^(+∞) ((x^(a−1) dx)/(x^2 −x+1))  +∫_0 ^∞ ((x^(a−1) dx)/(x^2 +x+1))  ((2iπe^(i(a−1)((2π)/3)) )/(2(−(1/2)+((i(√3))/2))+1))=((2iπe^(i(a−1)((2π)/3)) )/(i(√3)))=((2π)/(√3))(cos(((2π(a−1))/3))+isin(((2π(a−1))/3)))  =−isin(πa)∫_0 ^∞ ((x^(a−1) dx)/(x^2 −x+1))−cos(πa)∫_0 ^∞ ((x^(a−1) dx)/(x^2 −x+1))+∫_0 ^(+∞) ((x^(a−1) dx)/(x^2 +x+1))  ⇒((2iπ)/(√3))sin(((2π(a−1))/3))=−isin(πa)∫_0 ^(+∞) ((x^(a−1) dx)/(x^2 −x+1))  ⇒∫_0 ^(+∞) ((x^(a−1) dx)/(x^2 −x+1))=((−2πsin(((2π(a−1))/3)))/(sin(πa)(√3)))   ∫_0 ^(+∞) ((x^(a−1) dx)/(x^2 +x+1))=((2π)/(√3))cos(((2π(a−1))/3))+((−2πsin(((2π(a−1))/3))cos(πa))/(sin(πa)(√3)))  =((2π)/(√3)).(1/(sin(πa))){cos(((2π(a−1))/3))sin(πa)−sin(((2π(a−1))/3))cos(πa))  =((2π)/(sin(πa)(√3))){sin(πa−((2π(a−1))/3))}  =((2π)/((√3)sin(πa))){sin(((πa)/3)+((2π)/3))}  =((2π)/(sin(πa)(√3)))cos((π/2)−((πa)/3)−((2π)/3))=((2π)/(sin(πa)(√3)))(cos(((−πa)/3)−(π/6)))  =((2π)/(sin(πa)(√3)))cos(((2πa+π)/6))=((2π)/(√3))cos(((2πa+π)/6))cosec(πa)

+xa11+x+x2dx=0xa1dx1+x+x2+0+(1)a1xa11x+x2dx =CRxa11+x+x2dx0πRaei(a1)πR2R+10 0+eiπ(a1)xa1x2x+1dx+0xa1dxx2+x+1=2iπRes(za1z2+z+1,ei2π3) =2iπei(a1)2π3(3e2iπ3+1)=isin(πa)0xa1dxx2x+1+cos(πa)0+xa1dxx2x+1 +0xa1dxx2+x+1 2iπei(a1)2π32(12+i32)+1=2iπei(a1)2π3i3=2π3(cos(2π(a1)3)+isin(2π(a1)3)) =isin(πa)0xa1dxx2x+1cos(πa)0xa1dxx2x+1+0+xa1dxx2+x+1 2iπ3sin(2π(a1)3)=isin(πa)0+xa1dxx2x+1 0+xa1dxx2x+1=2πsin(2π(a1)3)sin(πa)3 0+xa1dxx2+x+1=2π3cos(2π(a1)3)+2πsin(2π(a1)3)cos(πa)sin(πa)3 =2π3.1sin(πa){cos(2π(a1)3)sin(πa)sin(2π(a1)3)cos(πa)) =2πsin(πa)3{sin(πa2π(a1)3)} =2π3sin(πa){sin(πa3+2π3)} =2πsin(πa)3cos(π2πa32π3)=2πsin(πa)3(cos(πa3π6)) =2πsin(πa)3cos(2πa+π6)=2π3cos(2πa+π6)cosec(πa)

Commented byajfour last updated on 12/Apr/20

Thank you sir, hope you liked  solving it.

Thankyousir,hopeyouliked solvingit.

Commented bymind is power last updated on 12/Apr/20

nice one Sir  since 4 or 5 month ago i lost my motivation  lost pleasur of solving problemes i dont know why!

niceoneSir since4or5monthagoilostmymotivation lostpleasurofsolvingproblemesidontknowwhy!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com