Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88586 by M±th+et£s last updated on 11/Apr/20

∫((√(cos(2x)+3))/(cos(x)))dx

cos(2x)+3cos(x)dx

Answered by TANMAY PANACEA. last updated on 11/Apr/20

∫((cos2x+3)/(cosx(√(3+cos2x))))dx  ∫((2cos^2 x+2)/(cosx(√(2cos^2 x+2))))  (I/2)=∫((cosx)/(√(2(cos^2 x+1))))dx+∫((secx dx)/(√(2cos^2 x+2)))  =(1/(√2))∫((cosx)/(√(2−sin^2 x)))dx+(1/(√2))∫((sec^2 x dx)/(√(1+sec^2 x)))  (I/(√2))=∫((d(sinx))/(√(2−sin^2 x)))+∫((d(tanx))/(√(2+tan^2 x)))  I=(√2) [sin^(−1) (((sinx)/(√2)))+ln(tanx+(√(2+tan^2 x)) )  pls check

cos2x+3cosx3+cos2xdx2cos2x+2cosx2cos2x+2I2=cosx2(cos2x+1)dx+secxdx2cos2x+2=12cosx2sin2xdx+12sec2xdx1+sec2xI2=d(sinx)2sin2x+d(tanx)2+tan2xI=2[sin1(sinx2)+ln(tanx+2+tan2x)plscheck

Commented by M±th+et£s last updated on 11/Apr/20

correct solution thank you sir

correctsolutionthankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com