Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 88592 by Rio Michael last updated on 11/Apr/20

show that the variance δ^2  of a set of observations x_1 ,x_2 ,...x_n  with mean  x^_  can be expressed in the form  δ^2  = ((Σ_(i=1) ^n x_i ^2 )/n) − x^� ^(2 )

showthatthevarianceδ2ofasetofobservationsx1,x2,...xnwithmeanx_canbeexpressedintheformδ2=ni=1xi2nx¯2

Answered by mr W last updated on 11/Apr/20

acc. to definition of variance:  σ^2 =(1/n)Σ_(i=1) ^n (x_i −x^(−) )^2   σ^2 =(1/n)Σ_(i=1) ^n (x_i ^2 −2x^(−) x_i +x^2 ^(−) )  σ^2 =(1/n){Σ_(i=1) ^n x_i ^2 −2x^(−) Σ_(i=1) ^n x_i +Σ_(i=1) ^n x^2 ^(−) }  σ^2 =(1/n){Σ_(i=1) ^n x_i ^2 −2x^(−) (nx^(−) )+x^2 ^(−) n}  σ^2 =(1/n){Σ_(i=1) ^n x_i ^2 −nx^2 ^(−) }  σ^2 =(1/n)Σ_(i=1) ^n x_i ^2 −x^2 ^(−)

acc.todefinitionofvariance:σ2=1nni=1(xix)2σ2=1nni=1(xi22xxi+x2)σ2=1n{ni=1xi22xni=1xi+ni=1x2}σ2=1n{ni=1xi22x(nx)+x2n}σ2=1n{ni=1xi2nx2}σ2=1nni=1xi2x2

Commented by Rio Michael last updated on 11/Apr/20

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com