Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 88594 by mr W last updated on 11/Apr/20

solve for x∈C  cos (x)=a+bi

solveforxCcos(x)=a+bi

Commented by abdomathmax last updated on 11/Apr/20

⇒ch(ix) =a+bi ⇒((e^(ix)  +e^(−ix) )/2)=a+bi ⇒  e^(ix)  +e^(−ix)  =2a+2bi  let e^(ix) =z ⇒ix =ln(z) ⇒  x =−iln(z)  (e)→z+z^(−1)  =2a+2bi ⇒z^2  +1 =(2a+2bi)z ⇒  z^2 −2(a+bi)z +1 =0  Δ^′ =(a+bi)^2 −1 =a^2  +2abi−b^2 −1  =a^2 −b^2 −1 +2abi =(√((a^2 −b^2 −1)^2  +4a^2 b^2 ))e^(iarctan(((2ab)/(a^2 −b^2 −1))))   ⇒z_1 =((a+bi +((a^2 −b^2 −1)^2  +4a^2 b^2 )^(1/4)  e^((i/2)arcran(((2ab)/(a^2 −b^2 −1)))) )/1)  z_2 =a+bi+{(a^2 −b^2 −1)^2 +4a^2 b^2 }^(1/4)  e^((i/2) arctan(((2ab)/(a^2 −b^2 −1))))   ⇒x =−iln( a+bi +^− {(a^2 −b^2 −1)^2 +4a^2 b^2 }^(1/4)  e^((i/2)arctan(((2ab)/(a^2 −b^2 −1))))

ch(ix)=a+bieix+eix2=a+bieix+eix=2a+2bileteix=zix=ln(z)x=iln(z)(e)z+z1=2a+2biz2+1=(2a+2bi)zz22(a+bi)z+1=0Δ=(a+bi)21=a2+2abib21=a2b21+2abi=(a2b21)2+4a2b2eiarctan(2aba2b21)z1=a+bi+((a2b21)2+4a2b2)14ei2arcran(2aba2b21)1z2=a+bi+{(a2b21)2+4a2b2}14ei2arctan(2aba2b21)x=iln(a+bi+{(a2b21)2+4a2b2}14ei2arctan(2aba2b21)

Commented by mr W last updated on 11/Apr/20

thank you sir! can you please put it into  x+yi form?

thankyousir!canyoupleaseputitintox+yiform?

Commented by abdomathmax last updated on 11/Apr/20

you are welcome you can sir use  u+iv =(√(u^2  +v^2 )) e^(isrctan((v/u)))  ⇒  ln(u+iv) =(1/2)ln(u^2  +v^2 )+iarctan((v/u)) ...now its  eazy with that...

youarewelcomeyoucansiruseu+iv=u2+v2eisrctan(vu)ln(u+iv)=12ln(u2+v2)+iarctan(vu)...nowitseazywiththat...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com