Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 88623 by ajfour last updated on 11/Apr/20

Commented by ajfour last updated on 11/Apr/20

If the solid cylinder has to roll  on to the inclined plane without  a jump, find u_(max) .

$${If}\:{the}\:{solid}\:{cylinder}\:{has}\:{to}\:{roll} \\ $$$${on}\:{to}\:{the}\:{inclined}\:{plane}\:{without} \\ $$$${a}\:{jump},\:{find}\:{u}_{{max}} . \\ $$

Commented by mr W last updated on 13/Apr/20

it′s ok if it just happend by accident.

$${it}'{s}\:{ok}\:{if}\:{it}\:{just}\:{happend}\:{by}\:{accident}. \\ $$

Commented by Zainal Arifin last updated on 13/Apr/20

I am sorry sir

$$\mathrm{I}\:\mathrm{am}\:\mathrm{sorry}\:\mathrm{sir} \\ $$

Commented by Zainal Arifin last updated on 14/Apr/20

you are right sir. it′s by accidence.

$$\mathrm{you}\:\mathrm{are}\:\mathrm{right}\:\mathrm{sir}.\:\mathrm{it}'\mathrm{s}\:\mathrm{by}\:\mathrm{accidence}. \\ $$

Answered by mr W last updated on 12/Apr/20

Answered by ajfour last updated on 12/Apr/20

Commented by ajfour last updated on 12/Apr/20

(1/2)((3/2)mR^2 )(u_(max) ^2 /R^2 )+mgR(1−cos α)        = (1/2)((3/2)mR^2 )(v^2 /R^2 )  ((mv^2 )/R)=mgcos α−N_2   for no jump and u_(max)  , N_2 =0  ⇒  (3/4)mu_(max) ^2 +mgR(1−cos α)                         = (3/4)mgRcos α  ⇒   u_(max) ^2 =(4/3){(7/4)gRcos α−gR}      u_(max) =(√(((4gR)/3)((7/4)cos α−1)))  .    (And it is right answer, Sir!)

$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{3}}{\mathrm{2}}{mR}^{\mathrm{2}} \right)\frac{{u}_{{max}} ^{\mathrm{2}} }{{R}^{\mathrm{2}} }+{mgR}\left(\mathrm{1}−\mathrm{cos}\:\alpha\right) \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{3}}{\mathrm{2}}{mR}^{\mathrm{2}} \right)\frac{{v}^{\mathrm{2}} }{{R}^{\mathrm{2}} } \\ $$$$\frac{{mv}^{\mathrm{2}} }{{R}}={mg}\mathrm{cos}\:\alpha−{N}_{\mathrm{2}} \\ $$$${for}\:{no}\:{jump}\:{and}\:{u}_{{max}} \:,\:{N}_{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\:\frac{\mathrm{3}}{\mathrm{4}}{mu}_{{max}} ^{\mathrm{2}} +{mgR}\left(\mathrm{1}−\mathrm{cos}\:\alpha\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{3}}{\mathrm{4}}{mgR}\mathrm{cos}\:\alpha \\ $$$$\Rightarrow\:\:\:{u}_{{max}} ^{\mathrm{2}} =\frac{\mathrm{4}}{\mathrm{3}}\left\{\frac{\mathrm{7}}{\mathrm{4}}{gR}\mathrm{cos}\:\alpha−{gR}\right\} \\ $$$$\:\:\:\:{u}_{{max}} =\sqrt{\frac{\mathrm{4}{gR}}{\mathrm{3}}\left(\frac{\mathrm{7}}{\mathrm{4}}\mathrm{cos}\:\alpha−\mathrm{1}\right)}\:\:. \\ $$$$\:\:\left({And}\:{it}\:{is}\:{right}\:{answer},\:{Sir}!\right) \\ $$

Commented by mr W last updated on 12/Apr/20

this is also what i thought: the  cylinder should be able to rotate  about the edge without losing the  contact force.

$${this}\:{is}\:{also}\:{what}\:{i}\:{thought}:\:{the} \\ $$$${cylinder}\:{should}\:{be}\:{able}\:{to}\:{rotate} \\ $$$${about}\:{the}\:{edge}\:{without}\:{losing}\:{the} \\ $$$${contact}\:{force}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com