Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 88673 by ajfour last updated on 12/Apr/20

Commented by john santu last updated on 12/Apr/20

eqn: ellips (x^2 /a^2 ) + (y^2 /b^2 ) = 1  eqn: circle x^2  +(y−r)^2  = r^2   eqn line AB ⇒ 2rx + ay = 2ar

$${eqn}:\:{ellips}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\:\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\mathrm{1} \\ $$$${eqn}:\:{circle}\:{x}^{\mathrm{2}} \:+\left({y}−{r}\right)^{\mathrm{2}} \:=\:{r}^{\mathrm{2}} \\ $$$${eqn}\:{line}\:{AB}\:\Rightarrow\:\mathrm{2}{rx}\:+\:{ay}\:=\:\mathrm{2}{ar} \\ $$

Commented by ajfour last updated on 12/Apr/20

Determine the radius of circle,  in terms of ellipse parameters  a and b.

$${Determine}\:{the}\:{radius}\:{of}\:{circle}, \\ $$$${in}\:{terms}\:{of}\:{ellipse}\:{parameters} \\ $$$${a}\:{and}\:{b}. \\ $$

Answered by mr W last updated on 12/Apr/20

A(a,0)  B(0,2r)  P((a/2),r)  r=(a/2)  ((((a/2))^2 )/a^2 )+(r^2 /b^2 )=1  ⇒r=(((√3)b)/2)=(a/2)  ⇒(a/b)=(√3)  i.e. possible only for ellipses with (a/b)=(√3)  the radius is r=(a/2)

$${A}\left({a},\mathrm{0}\right) \\ $$$${B}\left(\mathrm{0},\mathrm{2}{r}\right) \\ $$$${P}\left(\frac{{a}}{\mathrm{2}},{r}\right) \\ $$$${r}=\frac{{a}}{\mathrm{2}} \\ $$$$\frac{\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{r}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow{r}=\frac{\sqrt{\mathrm{3}}{b}}{\mathrm{2}}=\frac{{a}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{{a}}{{b}}=\sqrt{\mathrm{3}} \\ $$$${i}.{e}.\:{possible}\:{only}\:{for}\:{ellipses}\:{with}\:\frac{{a}}{{b}}=\sqrt{\mathrm{3}} \\ $$$${the}\:{radius}\:{is}\:{r}=\frac{{a}}{\mathrm{2}} \\ $$

Commented by mr W last updated on 12/Apr/20

Commented by ajfour last updated on 12/Apr/20

Sir, how P ≡((a/2), r)  ?

$${Sir},\:{how}\:{P}\:\equiv\left(\frac{{a}}{\mathrm{2}},\:{r}\right)\:\:? \\ $$

Commented by mr W last updated on 12/Apr/20

P is midpoint if AB,  x_P =((x_A +x_B )/2)=((a+0)/2)=(a/2)  y_P =((y_A +y_B )/2)=((0+2r)/2)=r

$${P}\:{is}\:{midpoint}\:{if}\:{AB}, \\ $$$${x}_{{P}} =\frac{{x}_{{A}} +{x}_{{B}} }{\mathrm{2}}=\frac{{a}+\mathrm{0}}{\mathrm{2}}=\frac{{a}}{\mathrm{2}} \\ $$$${y}_{{P}} =\frac{{y}_{{A}} +{y}_{{B}} }{\mathrm{2}}=\frac{\mathrm{0}+\mathrm{2}{r}}{\mathrm{2}}={r} \\ $$

Commented by ajfour last updated on 12/Apr/20

why P should be midpoint of AB,  please explain it Sir, i dont  follow  (its not given in question)..

$${why}\:{P}\:{should}\:{be}\:{midpoint}\:{of}\:{AB}, \\ $$$${please}\:{explain}\:{it}\:{Sir},\:{i}\:{dont} \\ $$$${follow}\:\:\left({its}\:{not}\:{given}\:{in}\:{question}\right).. \\ $$

Commented by mr W last updated on 12/Apr/20

then it′s my misunderstanding. i  thought we should find the case with  AP=PB.

$${then}\:{it}'{s}\:{my}\:{misunderstanding}.\:{i} \\ $$$${thought}\:{we}\:{should}\:{find}\:{the}\:{case}\:{with} \\ $$$${AP}={PB}. \\ $$

Answered by mr W last updated on 12/Apr/20

A(a,0)  B(0,2r)  say P(a cos θ, b sin θ)    P must be on line AB:  ((b sin θ)/(a cos θ−a))=((2r)/(−a))  ⇒b sin θ+2r cos θ=2r  let μ=(b/a), λ=(r/a)  ⇒(r/a)=λ=((μ sin θ)/(2(1−cos θ)))    P must be on circle:  (a cos θ)^2 +(b sin θ−r)^2 =r^2   (a^2 −b^2 ) sin^2  θ+2br sin θ−a^2 =0  (1−μ^2 )(1−cos^2  θ)+μ^2 (1+cos θ)−1=0  [(1−μ^2 )cos θ−μ^2 ]cos θ=0  ⇒cos θ=0 ⇒ not accepted  ⇒cos θ=(μ^2 /(1−μ^2 ))  ⇒sin θ=((√(1−2μ^2 ))/(1−μ^2 ))  λ=(μ/(2(1−(μ^2 /(1−μ^2 )))))×((√(1−2μ^2 ))/(1−μ^2 ))  ⇒λ=(μ/(2(√(1−2μ^2 ))))  ⇒r=((ab)/(2(√(a^2 −2b^2 ))))  with a>(√2)b

$${A}\left({a},\mathrm{0}\right) \\ $$$${B}\left(\mathrm{0},\mathrm{2}{r}\right) \\ $$$${say}\:{P}\left({a}\:\mathrm{cos}\:\theta,\:{b}\:\mathrm{sin}\:\theta\right) \\ $$$$ \\ $$$${P}\:{must}\:{be}\:{on}\:{line}\:{AB}: \\ $$$$\frac{{b}\:\mathrm{sin}\:\theta}{{a}\:\mathrm{cos}\:\theta−{a}}=\frac{\mathrm{2}{r}}{−{a}} \\ $$$$\Rightarrow{b}\:\mathrm{sin}\:\theta+\mathrm{2}{r}\:\mathrm{cos}\:\theta=\mathrm{2}{r} \\ $$$${let}\:\mu=\frac{{b}}{{a}},\:\lambda=\frac{{r}}{{a}} \\ $$$$\Rightarrow\frac{{r}}{{a}}=\lambda=\frac{\mu\:\mathrm{sin}\:\theta}{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)} \\ $$$$ \\ $$$${P}\:{must}\:{be}\:{on}\:{circle}: \\ $$$$\left({a}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\left({b}\:\mathrm{sin}\:\theta−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\:\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{2}{br}\:\mathrm{sin}\:\theta−{a}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)+\mu^{\mathrm{2}} \left(\mathrm{1}+\mathrm{cos}\:\theta\right)−\mathrm{1}=\mathrm{0} \\ $$$$\left[\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{cos}\:\theta−\mu^{\mathrm{2}} \right]\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\mathrm{0}\:\Rightarrow\:{not}\:{accepted} \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\frac{\mu^{\mathrm{2}} }{\mathrm{1}−\mu^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{\sqrt{\mathrm{1}−\mathrm{2}\mu^{\mathrm{2}} }}{\mathrm{1}−\mu^{\mathrm{2}} } \\ $$$$\lambda=\frac{\mu}{\mathrm{2}\left(\mathrm{1}−\frac{\mu^{\mathrm{2}} }{\mathrm{1}−\mu^{\mathrm{2}} }\right)}×\frac{\sqrt{\mathrm{1}−\mathrm{2}\mu^{\mathrm{2}} }}{\mathrm{1}−\mu^{\mathrm{2}} } \\ $$$$\Rightarrow\lambda=\frac{\mu}{\mathrm{2}\sqrt{\mathrm{1}−\mathrm{2}\mu^{\mathrm{2}} }} \\ $$$$\Rightarrow{r}=\frac{{ab}}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }}\:\:{with}\:{a}>\sqrt{\mathrm{2}}{b} \\ $$

Commented by mr W last updated on 12/Apr/20

Commented by mr W last updated on 12/Apr/20

Commented by ajfour last updated on 12/Apr/20

Nice question, very nicely  solved, sir. Marvellous, thank u.

$$\mathcal{N}{ice}\:{question},\:{very}\:{nicely} \\ $$$${solved},\:{sir}.\:\mathcal{M}{arvellous},\:{thank}\:{u}. \\ $$

Commented by mr W last updated on 12/Apr/20

r=(b/2) is always a solution, but i think  we won′t accept this, because B and P  coincide. otherwise i think for   given a and b, there is only one value  for r.

$${r}=\frac{{b}}{\mathrm{2}}\:{is}\:{always}\:{a}\:{solution},\:{but}\:{i}\:{think} \\ $$$${we}\:{won}'{t}\:{accept}\:{this},\:{because}\:{B}\:{and}\:{P} \\ $$$${coincide}.\:{otherwise}\:{i}\:{think}\:{for}\: \\ $$$${given}\:{a}\:{and}\:{b},\:{there}\:{is}\:{only}\:{one}\:{value} \\ $$$${for}\:{r}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com