Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88710 by jagoll last updated on 12/Apr/20

∫_(−(√3) ) ^(√3) ∫_1 ^(√(4−x^2 )) (x^2 +y^2 )^(3/2)  dydx

334x21(x2+y2)3/2dydx

Commented by mathmax by abdo last updated on 12/Apr/20

I =∫_(−(√3)) ^(√3)    (∫_1 ^(√(4−x^2 )) (x^2 +y^2 )^(3/2)  dy)dx =∫_(−(√3)) ^(√3)  A(x)dx  A(x) =∫_1 ^(√(4−x^2 )) (y^2  +x^2 )^(3/2)  dy  =_(y=∣x∣sh(t))   ∫_(argsh((1/(∣x∣)))) ^(argsh(((√(4−x^2 ))/(∣x∣)))) x^3 (ch^2 t)^(3/2) ∣x∣ch(t)dt  =∫_(ln((1/(∣x∣))+(√(1+(1/x^2 ))))) ^(ln(((√(4−x^2 ))/(∣x∣))+(√(1+((4−x^2 )/x^2 ))))) x^3 ∣x∣ ch^4 t dt  =x^3 ∣x∣ ∫_(α(x)) ^(β(x))   (((1+ch(2t))/2))^2  dt =(1/4)x^3 ∣x∣∫_(α(x)) ^(β(x))   (1+2ch(2t)+ch^2 (2t))dt  =(1/4)x^3 ∣x∣(β(x)−α(x))+(1/4)[sh(2t)]_(α(x)) ^(β(x))  +(1/4)x^3 ∣x∣ ∫_(α(x)) ^(β(x)) (((1+ch(4t))/2))dt  =(1/4)x^3 ∣x∣(β(x)−α(x))+(1/4)[((e^(2t) −e^(−2t) )/2)]_(α(x)) ^(β(x))  +(1/8)x^3 ∣x∣(β(x)−α(x))  +(1/(32))x^3 ∣x∣ [sh(4t)]_(α(x)) ^(β(x))   =(3/8)x^3 ∣x∣(β(x)−α(x))+(1/8){e^(2β(x)) −e^(−2α(x)) −e^(2α(x)) +e^(−2α(x)) }  +(1/(64))x^3 ∣x∣{e^(4β(x)) −e^(−4β(x)) −e^(4α(x)) +e^(−4α(x)) }....be continued...

I=33(14x2(x2+y2)32dy)dx=33A(x)dxA(x)=14x2(y2+x2)32dy=y=∣xsh(t)argsh(1x)argsh(4x2x)x3(ch2t)32xch(t)dt=ln(1x+1+1x2)ln(4x2x+1+4x2x2)x3xch4tdt=x3xα(x)β(x)(1+ch(2t)2)2dt=14x3xα(x)β(x)(1+2ch(2t)+ch2(2t))dt=14x3x(β(x)α(x))+14[sh(2t)]α(x)β(x)+14x3xα(x)β(x)(1+ch(4t)2)dt=14x3x(β(x)α(x))+14[e2te2t2]α(x)β(x)+18x3x(β(x)α(x))+132x3x[sh(4t)]α(x)β(x)=38x3x(β(x)α(x))+18{e2β(x)e2α(x)e2α(x)+e2α(x)}+164x3x{e4β(x)e4β(x)e4α(x)+e4α(x)}....becontinued...

Answered by john santu last updated on 12/Apr/20

let me try.  to converting to polar coordinates  y =(√(4−x^2 )) ⇒ { ((y=1)),((r=2 , θ = (π/6), ((5π)/6))) :}  I = ∫_(π/6) ^((5π)/6)  ∫_(csc θ) ^2  (r^2 )^(3/2)  (r dr dθ)  I = ∫_(π/6) ^((5π)/6)  ∫_(csc θ) ^2  r^4  dr dθ  I = ∫_(π/6) ^((5π)/6)  {(1/5)r^5  ]_(csc θ) ^2 } dθ  I = (1/5)∫_(π/6) ^((5π)/6)  (32−csc^5  θ ) dθ  I = (1/5)(((64π)/3) −∫_(π/6) ^((5π)/6)  csc^5  θ dθ)  I = ((64π)/(15)) −(1/5) [−(1/4) csc^3  θ cot θ   − (3/8)csc θ cot θ −(3/8) ln ∣ csc θ + cot θ ∣ ]^((5π)/6) _(   (π/6))   I = (1/(60)) ( 256π −9 ln (2+(√3) )−66(√3) )

letmetry.toconvertingtopolarcoordinatesy=4x2{y=1r=2,θ=π6,5π6I=5π6π62cscθ(r2)32(rdrdθ)I=5π6π62cscθr4drdθI=5π6π6{15r5]cscθ2}dθI=155π6π6(32csc5θ)dθI=15(64π35π6π6csc5θdθ)I=64π1515[14csc3θcotθMissing \left or extra \rightI=160(256π9ln(2+3)663)

Commented by jagoll last updated on 12/Apr/20

thank you sir.

thankyousir.

Answered by mr W last updated on 12/Apr/20

I=∫_(−(√3) ) ^(√3) ∫_1 ^(√(4−x^2 )) (x^2 +y^2 )^(3/2)  dydx  =2∫_( 0 ) ^(√3) ∫_1 ^(√(4−x^2 )) (x^2 +y^2 )^(3/2)  dydx  =2∫_(π/6) ^(π/2) ∫_(1/(sin θ)) ^( 2) r^4 drdθ  =(2/5)∫_(π/6) ^(π/2) (2^5 −(1/(sin^5  θ)))dθ  =(2/5)[32((π/2)−(π/6))−∫_(π/6) ^(π/2) (dθ/(sin^5  θ))]  =(2/5)[((32π)/3)−∫_(π/6) ^(π/2) (dθ/(sin^5  θ))]  =(2/5)[((32π)/3)−((11(√3))/4)−((3 ln (2+(√3)))/8)]  =(1/(60))[256π−66(√3)−9 ln (2+(√3))]  ≈11.301    ∫_(π/6) ^(π/2) (dθ/(sin^5  θ))  =∫_(π/6) ^(π/2) ((sin θdθ)/(sin^6  θ))  =−∫_(π/6) ^(π/2) ((d(cos θ))/((1−cos^2  θ)^3 ))  =∫_0 ^((√3)/2) (du/((1−u^2 )^3 ))  ......  =(3/8)ln (2+(√3))+((11(√3))/4)

I=334x21(x2+y2)3/2dydx=2304x21(x2+y2)3/2dydx=2π6π21sinθ2r4drdθ=25π6π2(251sin5θ)dθ=25[32(π2π6)π6π2dθsin5θ]=25[32π3π6π2dθsin5θ]=25[32π311343ln(2+3)8]=160[256π6639ln(2+3)]11.301π6π2dθsin5θ=π6π2sinθdθsin6θ=π6π2d(cosθ)(1cos2θ)3=032du(1u2)3......=38ln(2+3)+1134

Commented by mr W last updated on 12/Apr/20

 { ((θ=(π/6))),((θ=((5π)/6))) :}  equal to 2 times θ from (π/6) to (π/2) due to  symmetry

{θ=π6θ=5π6equalto2timesθfromπ6toπ2duetosymmetry

Commented by john santu last updated on 12/Apr/20

sir, if r = 2 , y = 1  then 2 sin θ = 1  { ((θ=(π/6))),((θ=((5π)/6))) :}

sir,ifr=2,y=1then2sinθ=1{θ=π6θ=5π6

Commented by mr W last updated on 12/Apr/20

our results are the same.

ourresultsarethesame.

Commented by john santu last updated on 12/Apr/20

oo yes sir. thank you

ooyessir.thankyou

Commented by jagoll last updated on 12/Apr/20

thank you mr W

thankyoumrW

Terms of Service

Privacy Policy

Contact: info@tinkutara.com