Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 88754 by ajfour last updated on 12/Apr/20

Commented by mr W last updated on 13/Apr/20

there is no unique solution for (b/a).  we can only find the correlation between  a and b.

$${there}\:{is}\:{no}\:{unique}\:{solution}\:{for}\:\frac{{b}}{{a}}. \\ $$$${we}\:{can}\:{only}\:{find}\:{the}\:{correlation}\:{between} \\ $$$${a}\:{and}\:{b}. \\ $$

Commented by mr W last updated on 13/Apr/20

Commented by mr W last updated on 13/Apr/20

b_(max)  is when a=0  b_(min) is 0 when a_(max)  (red marked)  between both extrem cases there are  infinite possibilities.

$${b}_{{max}} \:{is}\:{when}\:{a}=\mathrm{0} \\ $$$${b}_{{min}} {is}\:\mathrm{0}\:{when}\:{a}_{{max}} \:\left({red}\:{marked}\right) \\ $$$${between}\:{both}\:{extrem}\:{cases}\:{there}\:{are} \\ $$$${infinite}\:{possibilities}. \\ $$

Answered by mr W last updated on 13/Apr/20

Commented by mr W last updated on 13/Apr/20

say radius of big quarter circle is R.  tan α=(a/(R−a))  OE=R tan (2α)=R×((2×(a/(R−a)))/(1−((a/(R−a)))^2 ))=((2(R−a)a)/(R−2a))  tan β=(a/(((2(R−a)a)/(R−2a))−a))=((R−2a)/R)  tan γ=(a/((√((R−a)^2 −a^2 ))−((2(R−a)a)/(R−2a))))=(((R−2a)a)/((R−2a)(√(R(R−2a)))−2(R−a)a))  β+δ+γ=(π/2)  ⇒δ=(π/2)−β−γ  ∠OEB=2β+δ=(π/2)+β−γ  OB=R−b  OB^2 =OE^2 +EB^2 −2×OE×cos ∠OEB×EB  EB^2 −2×OE×cos ∠OEB×EB+OE^2 −OB^2 =0  EB^2 −((4(R−a)a)/(R−2a))×sin (γ−β)×EB+[((2(R−a)a)/(R−2a))]^2 −(R−b)^2 =0  EB=(b/(sin δ))=(b/(cos (β+γ)))  [(b/(cos (β+γ)))]^2 −((4(R−a)a)/(R−2a))×sin (γ−β)×(b/(cos (β+γ)))+[((2(R−a)a)/(R−2a))]^2 −(R−b)^2 =0  let μ=(a/R), ν=(b/R)  ⇒β=tan^(−1) (1−2μ)  ⇒γ=tan^(−1) (((1−2μ)μ)/((1−2μ)^(3/2) −2(1−μ)μ))  (ν^2 /(cos^2  (β+γ)))−((4(1−μ)μν)/(1−2μ))×((sin (γ−β))/(cos (β+γ)))+[((2(1−μ)μ)/(1−2μ))]^2 −(1−ν)^2 =0  let λ=(b/a)=(ν/μ)  ((μ^2 λ^2 )/(cos^2  (β+γ)))−((4(1−μ)μ^2 λ)/(1−2μ))×((sin (γ−β))/(cos (β+γ)))+[((2(1−μ)μ)/(1−2μ))]^2 −(1−μλ)^2 =0  tan^2  (α+γ)λ^2 −2[((2(1−μ))/(1−2μ))×((sin (γ−β))/(cos (β+γ)))−(1/μ)]λ−[(1/μ^2 )−((4(1−μ)^2 )/((1−2μ)^2 ))]=0  ⇒λ=(1/(tan^2  (β+γ))){((2(1−μ) sin (γ−β))/((1−2μ) cos (β+γ)))−(1/μ)+(√([((2(1−μ) sin (γ−β))/((1−2μ) cos (β+γ)))−(1/μ)]^2 +tan^2  (α+γ)[(1/μ^2 )−((4(1−μ)^2 )/((1−2μ)^2 ))]))}  we see λ is not a constant, but a function of μ,  since there are infinite circles with  radii a and b.    a_(max)  is when b=0, δ=0, i.e. β+γ=(π/2)  tan γ=(1/(tan β))  (((1−2μ)μ)/((1−2μ)^(3/2) −2(1−μ)μ))=(1/(1−2μ))  (1−2μ)^(3/2) −2(1−μ)μ=μ(1−2μ)^2   μ=0.2222  i.e. a≤0.2222R    (√2)b_(max) =R−b_(max)   ⇒b_(max) =(R/(1+(√2)))≈0.4142R

$${say}\:{radius}\:{of}\:{big}\:{quarter}\:{circle}\:{is}\:{R}. \\ $$$$\mathrm{tan}\:\alpha=\frac{{a}}{{R}−{a}} \\ $$$${OE}={R}\:\mathrm{tan}\:\left(\mathrm{2}\alpha\right)={R}×\frac{\mathrm{2}×\frac{{a}}{{R}−{a}}}{\mathrm{1}−\left(\frac{{a}}{{R}−{a}}\right)^{\mathrm{2}} }=\frac{\mathrm{2}\left({R}−{a}\right){a}}{{R}−\mathrm{2}{a}} \\ $$$$\mathrm{tan}\:\beta=\frac{{a}}{\frac{\mathrm{2}\left({R}−{a}\right){a}}{{R}−\mathrm{2}{a}}−{a}}=\frac{{R}−\mathrm{2}{a}}{{R}} \\ $$$$\mathrm{tan}\:\gamma=\frac{{a}}{\sqrt{\left({R}−{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} }−\frac{\mathrm{2}\left({R}−{a}\right){a}}{{R}−\mathrm{2}{a}}}=\frac{\left({R}−\mathrm{2}{a}\right){a}}{\left({R}−\mathrm{2}{a}\right)\sqrt{{R}\left({R}−\mathrm{2}{a}\right)}−\mathrm{2}\left({R}−{a}\right){a}} \\ $$$$\beta+\delta+\gamma=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\delta=\frac{\pi}{\mathrm{2}}−\beta−\gamma \\ $$$$\angle{OEB}=\mathrm{2}\beta+\delta=\frac{\pi}{\mathrm{2}}+\beta−\gamma \\ $$$${OB}={R}−{b} \\ $$$${OB}^{\mathrm{2}} ={OE}^{\mathrm{2}} +{EB}^{\mathrm{2}} −\mathrm{2}×{OE}×\mathrm{cos}\:\angle{OEB}×{EB} \\ $$$${EB}^{\mathrm{2}} −\mathrm{2}×{OE}×\mathrm{cos}\:\angle{OEB}×{EB}+{OE}^{\mathrm{2}} −{OB}^{\mathrm{2}} =\mathrm{0} \\ $$$${EB}^{\mathrm{2}} −\frac{\mathrm{4}\left({R}−{a}\right){a}}{{R}−\mathrm{2}{a}}×\mathrm{sin}\:\left(\gamma−\beta\right)×{EB}+\left[\frac{\mathrm{2}\left({R}−{a}\right){a}}{{R}−\mathrm{2}{a}}\right]^{\mathrm{2}} −\left({R}−{b}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${EB}=\frac{{b}}{\mathrm{sin}\:\delta}=\frac{{b}}{\mathrm{cos}\:\left(\beta+\gamma\right)} \\ $$$$\left[\frac{{b}}{\mathrm{cos}\:\left(\beta+\gamma\right)}\right]^{\mathrm{2}} −\frac{\mathrm{4}\left({R}−{a}\right){a}}{{R}−\mathrm{2}{a}}×\mathrm{sin}\:\left(\gamma−\beta\right)×\frac{{b}}{\mathrm{cos}\:\left(\beta+\gamma\right)}+\left[\frac{\mathrm{2}\left({R}−{a}\right){a}}{{R}−\mathrm{2}{a}}\right]^{\mathrm{2}} −\left({R}−{b}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${let}\:\mu=\frac{{a}}{{R}},\:\nu=\frac{{b}}{{R}} \\ $$$$\Rightarrow\beta=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{2}\mu\right) \\ $$$$\Rightarrow\gamma=\mathrm{tan}^{−\mathrm{1}} \frac{\left(\mathrm{1}−\mathrm{2}\mu\right)\mu}{\left(\mathrm{1}−\mathrm{2}\mu\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{2}\left(\mathrm{1}−\mu\right)\mu} \\ $$$$\frac{\nu^{\mathrm{2}} }{\mathrm{cos}^{\mathrm{2}} \:\left(\beta+\gamma\right)}−\frac{\mathrm{4}\left(\mathrm{1}−\mu\right)\mu\nu}{\mathrm{1}−\mathrm{2}\mu}×\frac{\mathrm{sin}\:\left(\gamma−\beta\right)}{\mathrm{cos}\:\left(\beta+\gamma\right)}+\left[\frac{\mathrm{2}\left(\mathrm{1}−\mu\right)\mu}{\mathrm{1}−\mathrm{2}\mu}\right]^{\mathrm{2}} −\left(\mathrm{1}−\nu\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${let}\:\lambda=\frac{{b}}{{a}}=\frac{\nu}{\mu} \\ $$$$\frac{\mu^{\mathrm{2}} \lambda^{\mathrm{2}} }{\mathrm{cos}^{\mathrm{2}} \:\left(\beta+\gamma\right)}−\frac{\mathrm{4}\left(\mathrm{1}−\mu\right)\mu^{\mathrm{2}} \lambda}{\mathrm{1}−\mathrm{2}\mu}×\frac{\mathrm{sin}\:\left(\gamma−\beta\right)}{\mathrm{cos}\:\left(\beta+\gamma\right)}+\left[\frac{\mathrm{2}\left(\mathrm{1}−\mu\right)\mu}{\mathrm{1}−\mathrm{2}\mu}\right]^{\mathrm{2}} −\left(\mathrm{1}−\mu\lambda\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{tan}^{\mathrm{2}} \:\left(\alpha+\gamma\right)\lambda^{\mathrm{2}} −\mathrm{2}\left[\frac{\mathrm{2}\left(\mathrm{1}−\mu\right)}{\mathrm{1}−\mathrm{2}\mu}×\frac{\mathrm{sin}\:\left(\gamma−\beta\right)}{\mathrm{cos}\:\left(\beta+\gamma\right)}−\frac{\mathrm{1}}{\mu}\right]\lambda−\left[\frac{\mathrm{1}}{\mu^{\mathrm{2}} }−\frac{\mathrm{4}\left(\mathrm{1}−\mu\right)^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{2}\mu\right)^{\mathrm{2}} }\right]=\mathrm{0} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\left(\beta+\gamma\right)}\left\{\frac{\mathrm{2}\left(\mathrm{1}−\mu\right)\:\mathrm{sin}\:\left(\gamma−\beta\right)}{\left(\mathrm{1}−\mathrm{2}\mu\right)\:\mathrm{cos}\:\left(\beta+\gamma\right)}−\frac{\mathrm{1}}{\mu}+\sqrt{\left[\frac{\mathrm{2}\left(\mathrm{1}−\mu\right)\:\mathrm{sin}\:\left(\gamma−\beta\right)}{\left(\mathrm{1}−\mathrm{2}\mu\right)\:\mathrm{cos}\:\left(\beta+\gamma\right)}−\frac{\mathrm{1}}{\mu}\right]^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\left(\alpha+\gamma\right)\left[\frac{\mathrm{1}}{\mu^{\mathrm{2}} }−\frac{\mathrm{4}\left(\mathrm{1}−\mu\right)^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{2}\mu\right)^{\mathrm{2}} }\right]}\right\} \\ $$$${we}\:{see}\:\lambda\:{is}\:{not}\:{a}\:{constant},\:{but}\:{a}\:{function}\:{of}\:\mu, \\ $$$${since}\:{there}\:{are}\:{infinite}\:{circles}\:{with} \\ $$$${radii}\:{a}\:{and}\:{b}. \\ $$$$ \\ $$$${a}_{{max}} \:{is}\:{when}\:{b}=\mathrm{0},\:\delta=\mathrm{0},\:{i}.{e}.\:\beta+\gamma=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{tan}\:\gamma=\frac{\mathrm{1}}{\mathrm{tan}\:\beta} \\ $$$$\frac{\left(\mathrm{1}−\mathrm{2}\mu\right)\mu}{\left(\mathrm{1}−\mathrm{2}\mu\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{2}\left(\mathrm{1}−\mu\right)\mu}=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{2}\mu} \\ $$$$\left(\mathrm{1}−\mathrm{2}\mu\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{2}\left(\mathrm{1}−\mu\right)\mu=\mu\left(\mathrm{1}−\mathrm{2}\mu\right)^{\mathrm{2}} \\ $$$$\mu=\mathrm{0}.\mathrm{2222} \\ $$$${i}.{e}.\:{a}\leqslant\mathrm{0}.\mathrm{2222}{R} \\ $$$$ \\ $$$$\sqrt{\mathrm{2}}{b}_{{max}} ={R}−{b}_{{max}} \\ $$$$\Rightarrow{b}_{{max}} =\frac{{R}}{\mathrm{1}+\sqrt{\mathrm{2}}}\approx\mathrm{0}.\mathrm{4142}{R} \\ $$

Commented by ajfour last updated on 13/Apr/20

Sir, sorry for my poor under-  standing earlier, I understand,  totally agree, and am extremely  thankful to you for explanaton.

$${Sir},\:{sorry}\:{for}\:{my}\:{poor}\:{under}- \\ $$$${standing}\:{earlier},\:{I}\:{understand}, \\ $$$${totally}\:{agree},\:{and}\:{am}\:{extremely} \\ $$$${thankful}\:{to}\:{you}\:{for}\:{explanaton}. \\ $$$$ \\ $$

Commented by mr W last updated on 13/Apr/20

Commented by mr W last updated on 13/Apr/20

Commented by ajfour last updated on 13/Apr/20

should have asked b/a  for this.

$${should}\:{have}\:{asked}\:{b}/{a}\:\:{for}\:{this}. \\ $$

Commented by ajfour last updated on 13/Apr/20

Commented by mr W last updated on 13/Apr/20

there is then an unique solution.  this is the case with γ=(π/4) in my  working.

$${there}\:{is}\:{then}\:{an}\:{unique}\:{solution}. \\ $$$${this}\:{is}\:{the}\:{case}\:{with}\:\gamma=\frac{\pi}{\mathrm{4}}\:{in}\:{my} \\ $$$${working}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com