Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 88811 by jagoll last updated on 13/Apr/20

 { (((x+1)^2 (y+1)^2 =27xy)),(((x^2 +1)(y^2 +1) =10xy)) :}

$$\begin{cases}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({y}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{27}{xy}}\\{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({y}^{\mathrm{2}} +\mathrm{1}\right)\:=\mathrm{10}{xy}}\end{cases} \\ $$

Answered by john santu last updated on 13/Apr/20

let me try   ((√x)+(1/(√x)))^2 ((√y)+(1/(√y)))^2  = 27  (x+(1/x))(y+(1/y)) = 10  take (√x)+(1/(√x)) = u , (√y)+(1/((√y) )) = v  ⇒u^2 v^2  = 27  ⇒(u^2 −2)(v^2 −2) = 10  u^2 v^2 −2(u^2 +v^2 ) = 6 ⇒u^2 +v^2  = ((21)/2)  u^2 , v^2  are roots of w^2 −((21)/2)w +27 =0  we get w_1  = 6 ∧ w_2  = (9/2)  then u^2 = 6 ∧ v^2  = (9/2)  u^2 −2=4 , w^2 −2=(5/2)  (1)x+(1/x) = 4 ⇒ x = 2±(√3)  (2) x+(1/x) = (5/2)⇒x = (1/2); 2  since eqn (1) & (2) x and y symetric ,   the solution (x,y) is (2±(√3) ,2),  (2±(√3) , (1/2)) , ((1/2), 2±(√3) ) ,   (2, 2±(√3) )

$${let}\:{me}\:{try}\: \\ $$$$\left(\sqrt{{x}}+\frac{\mathrm{1}}{\sqrt{{x}}}\right)^{\mathrm{2}} \left(\sqrt{{y}}+\frac{\mathrm{1}}{\sqrt{{y}}}\right)^{\mathrm{2}} \:=\:\mathrm{27} \\ $$$$\left({x}+\frac{\mathrm{1}}{{x}}\right)\left({y}+\frac{\mathrm{1}}{{y}}\right)\:=\:\mathrm{10} \\ $$$${take}\:\sqrt{{x}}+\frac{\mathrm{1}}{\sqrt{{x}}}\:=\:{u}\:,\:\sqrt{{y}}+\frac{\mathrm{1}}{\sqrt{{y}}\:}\:=\:{v} \\ $$$$\Rightarrow{u}^{\mathrm{2}} {v}^{\mathrm{2}} \:=\:\mathrm{27} \\ $$$$\Rightarrow\left({u}^{\mathrm{2}} −\mathrm{2}\right)\left({v}^{\mathrm{2}} −\mathrm{2}\right)\:=\:\mathrm{10} \\ $$$${u}^{\mathrm{2}} {v}^{\mathrm{2}} −\mathrm{2}\left({u}^{\mathrm{2}} +{v}^{\mathrm{2}} \right)\:=\:\mathrm{6}\:\Rightarrow{u}^{\mathrm{2}} +{v}^{\mathrm{2}} \:=\:\frac{\mathrm{21}}{\mathrm{2}} \\ $$$${u}^{\mathrm{2}} ,\:{v}^{\mathrm{2}} \:{are}\:{roots}\:{of}\:{w}^{\mathrm{2}} −\frac{\mathrm{21}}{\mathrm{2}}{w}\:+\mathrm{27}\:=\mathrm{0} \\ $$$${we}\:{get}\:{w}_{\mathrm{1}} \:=\:\mathrm{6}\:\wedge\:{w}_{\mathrm{2}} \:=\:\frac{\mathrm{9}}{\mathrm{2}} \\ $$$${then}\:{u}^{\mathrm{2}} =\:\mathrm{6}\:\wedge\:{v}^{\mathrm{2}} \:=\:\frac{\mathrm{9}}{\mathrm{2}} \\ $$$${u}^{\mathrm{2}} −\mathrm{2}=\mathrm{4}\:,\:{w}^{\mathrm{2}} −\mathrm{2}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\left(\mathrm{1}\right){x}+\frac{\mathrm{1}}{{x}}\:=\:\mathrm{4}\:\Rightarrow\:{x}\:=\:\mathrm{2}\pm\sqrt{\mathrm{3}} \\ $$$$\left(\mathrm{2}\right)\:{x}+\frac{\mathrm{1}}{{x}}\:=\:\frac{\mathrm{5}}{\mathrm{2}}\Rightarrow{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}};\:\mathrm{2} \\ $$$${since}\:{eqn}\:\left(\mathrm{1}\right)\:\&\:\left(\mathrm{2}\right)\:{x}\:{and}\:{y}\:{symetric}\:,\: \\ $$$${the}\:{solution}\:\left({x},{y}\right)\:{is}\:\left(\mathrm{2}\pm\sqrt{\mathrm{3}}\:,\mathrm{2}\right), \\ $$$$\left(\mathrm{2}\pm\sqrt{\mathrm{3}}\:,\:\frac{\mathrm{1}}{\mathrm{2}}\right)\:,\:\left(\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{2}\pm\sqrt{\mathrm{3}}\:\right)\:,\: \\ $$$$\left(\mathrm{2},\:\mathrm{2}\pm\sqrt{\mathrm{3}}\:\right) \\ $$

Commented by jagoll last updated on 13/Apr/20

waw...cooll

$${waw}...{cooll} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com