Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88852 by M±th+et£s last updated on 13/Apr/20

prove that  ∫_0 ^n ⌈x⌉dx= ((n(n+1))/2) and ∫_0 ^n ⌊x⌋dx=((n(n−1))/2)  when ⌊..⌋ is floor and ⌈..⌉ is ceil

provethat0nxdx=n(n+1)2and0nxdx=n(n1)2when..isfloorand..isceil

Answered by mr W last updated on 13/Apr/20

∫_0 ^n ⌈x⌉dx=Σ_(k=0) ^(n−1) ∫_k ^(k+1) ⌈x⌉dx=Σ_(k=0) ^(n−1) ∫_k ^(k+1) (k+1)dx  =Σ_(k=0) ^(n−1) (k+1)=Σ_(k=1) ^n k=((n(n+1))/2)    ∫_0 ^n ⌊x⌋dx=Σ_(k=0) ^(n−1) ∫_k ^(k+1) ⌊x⌋dx=Σ_(k=0) ^(n−1) ∫_k ^(k+1) kdx  =Σ_(k=0) ^(n−1) k=(((n−1)n)/2)

0nxdx=n1k=0kk+1xdx=n1k=0kk+1(k+1)dx=n1k=0(k+1)=nk=1k=n(n+1)20nxdx=n1k=0kk+1xdx=n1k=0kk+1kdx=n1k=0k=(n1)n2

Commented by M±th+et£s last updated on 13/Apr/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com