Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 88867 by liki last updated on 13/Apr/20

Commented by liki last updated on 13/Apr/20

..help me please question roman i,ii & ii

..helpmepleasequestionromani,ii&ii

Answered by TANMAY PANACEA. last updated on 13/Apr/20

acosθ+bsinθ=c  t=tan(θ/2)  a(((1−t^2 )/(1+t^2 )))+b(((2t)/(1+t^2 )))=c  a−at^2 +2bt=c+ct^2   t^2 (a+c)+t(−2b)+(c−a)=0  t_1 +t_2 =((2b  )/(a+c))   and  t_1 t_2 =((c−a)/(c+a))  t_1 =tan((α/2))   t_2 =tan((β/2))  sin(α+β)=sin2(((α+β)/2))=((2tan(((α+β)/2)))/(1+tan^2 (((α+β)/2))))  now sin(α+β)=((2×((tan(α/2)+tan(β/2))/(1−tan(α/2).tan(β/2))))/(1+(((tan(α/2)+tan(β/2))/(1−tan(α/2).tan(β/2))))^2 ))  =((2×((t_1 +t_2 )/(1−t_1 t_2 )))/(1+(((t_1 +t_2 )/(1−t_1 t_2 )))^2 ))  =((2(t_1 +t_2 )(1−t_1 t_2 ))/((1−t_1 t_2 )^2 +(t_1 +t_2 )^2 ))  =((2(((2b)/(a+c)))(1−((c−a)/(c+a))))/((1−((c−a)/(c+a)))^2 +(((2b)/(c+a)))^2 ))  =(((4b×2a)/((c+a)^2 ))/(((4a^2 )/((c+a)^2 ))+((4b^2 )/((c+a)^2 ))))=((8ab)/(4(a^2 +b^2 )))=((2ab)/(a^2 +b^2 ))  2)tan(α+β)=tan2(((α+β)/2))=((2tan(((α+β)/2)))/(1−tan^2 (((α+β)/2))))  =((2(((t_1 +t_2 )/(1−t_1 t_2 ))))/(1−(((t_1 +t_2 )/(1−t_1 t_2 )))^2 ))=((2(t_1 +t_2 )(1−t_1 t_2 ))/((1−t_1 t_2 )^2 −(t_1 +t_2 )^2 ))  =((2(((2b)/(a+c)))(1−((c−a)/(c+a))))/((1−((c−a)/(c+a)))^2 −(((2b)/(c+a)))^2 ))  =((4b×2a)/(4a^2 −4b^2 ))=((2ab)/(a^2 −b^2 ))  3)cos(α−β)=((1−tan^2 (((α−β)/2)))/(1+tan^2 (((α−β)/2))))  =((1−(((t_1 −t_2 )/(1+t_1 t_2 )))^2 )/(1+(((t_1 −t_2 )/(1+t_1 t_2 )))^2 ))  =(((1+t_1 t_2 )^2 −(t_1 −t_2 )^2 )/((1+t_1 t_2 )^2 +(t_1 −t_2 )^2 ))  =(((1+t_1 t_2 )^2 −(t_1 +t_2 )^2 +4t_1 t_2 )/((1+t_1 t_2 )^2 +(t_1 +t_2 )^2 −4t_1 t_2 ))  =(((1+((c−a)/(c+a)))^2 −(((2b)/(c+a)))^2 +4.((c−a)/(c+a)))/((1+((c−a)/(c+a)))^2 +(((2b)/(c+a)))^2 −4.(((c−a)/(c+a)))))  =(((4c^2 −4b^2 +4(c^2 −a^2 ))/((c+a)^2 ))/((4c^2 +4b^2 −4(c^2 −a^2 ))/((c+a)^2 )))  =((c^2 −b^2 +c^2 −a^2 )/(c^2 +b^2 −c^2 +a^2 ))  ((2c^2 −a^2 −b^2 )/(a^2 +b^2 ))

acosθ+bsinθ=ct=tanθ2a(1t21+t2)+b(2t1+t2)=caat2+2bt=c+ct2t2(a+c)+t(2b)+(ca)=0t1+t2=2ba+candt1t2=cac+at1=tan(α2)t2=tan(β2)sin(α+β)=sin2(α+β2)=2tan(α+β2)1+tan2(α+β2)nowsin(α+β)=2×tanα2+tanβ21tanα2.tanβ21+(tanα2+tanβ21tanα2.tanβ2)2=2×t1+t21t1t21+(t1+t21t1t2)2=2(t1+t2)(1t1t2)(1t1t2)2+(t1+t2)2=2(2ba+c)(1cac+a)(1cac+a)2+(2bc+a)2=4b×2a(c+a)24a2(c+a)2+4b2(c+a)2=8ab4(a2+b2)=2aba2+b22)tan(α+β)=tan2(α+β2)=2tan(α+β2)1tan2(α+β2)=2(t1+t21t1t2)1(t1+t21t1t2)2=2(t1+t2)(1t1t2)(1t1t2)2(t1+t2)2=2(2ba+c)(1cac+a)(1cac+a)2(2bc+a)2=4b×2a4a24b2=2aba2b23)cos(αβ)=1tan2(αβ2)1+tan2(αβ2)=1(t1t21+t1t2)21+(t1t21+t1t2)2=(1+t1t2)2(t1t2)2(1+t1t2)2+(t1t2)2=(1+t1t2)2(t1+t2)2+4t1t2(1+t1t2)2+(t1+t2)24t1t2=(1+cac+a)2(2bc+a)2+4.cac+a(1+cac+a)2+(2bc+a)24.(cac+a)=4c24b2+4(c2a2)(c+a)24c2+4b24(c2a2)(c+a)2=c2b2+c2a2c2+b2c2+a22c2a2b2a2+b2

Commented by liki last updated on 13/Apr/20

...thank you so much sir blessed

...thankyousomuchsirblessed

Commented by TANMAY PANACEA. last updated on 13/Apr/20

most welcome

mostwelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com