Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 89010 by ajfour last updated on 14/Apr/20

Commented by ajfour last updated on 14/Apr/20

Find C(h,k) in terms of a,b.

$${Find}\:{C}\left({h},{k}\right)\:{in}\:{terms}\:{of}\:{a},{b}. \\ $$

Commented by ajfour last updated on 14/Apr/20

yes sir, I agree.

$${yes}\:{sir},\:{I}\:{agree}. \\ $$

Commented by mr W last updated on 14/Apr/20

OD is not independent, so it should  not be given.

$${OD}\:{is}\:{not}\:{independent},\:{so}\:{it}\:{should} \\ $$$${not}\:{be}\:{given}. \\ $$

Commented by ajfour last updated on 15/Apr/20

Answered by mr W last updated on 14/Apr/20

Commented by mr W last updated on 16/Apr/20

let μ=(b/a)  ((r^2 cos^2  θ)/a^2 )+((r^2 sin^2  θ)/b^2 )=1  r=((ab)/(√(a^2 sin^2  θ+b^2 cos^2  θ)))  (x/a^2 )+(y/b^2 )×(dy/dx)=0 ⇒(dy/dx)=−((b^2 x)/(a^2 y))=−(b^2 /(a^2  tan θ))    CA=CB=((ab)/(√(a^2 sin^2  θ+b^2 cos^2  θ)))  CD=((ab)/(√(a^2 cos^2  θ+b^2 sin^2  θ)))  tan (ϕ−θ)=(dy/dx)=(b^2 /(a^2  tan θ))=(μ^2 /(tan θ))  ((tan ϕ−tan θ)/(1+tan ϕ tan θ))=(μ^2 /(tan θ))  ⇒tan ϕ=((μ^2 +tan^2  θ)/((1−μ^2 )tan θ))    tan ϕ=((CB)/(CD))=(√((a^2 cos^2  θ+b^2 sin^2  θ)/(a^2 sin^2  θ+b^2 cos^2  θ)))  ⇒tan ϕ=(√((1+μ^2 tan^2  θ)/(μ^2 +tan^2  θ)))    ((μ^2 +tan^2  θ)/((1−μ^2 )tan θ))=(√((1+μ^2 tan^2  θ)/(μ^2 +tan^2  θ)))  ((μ^4 +2μ^2 tan^2  θ+tan^4  θ)/((1−μ^2 )^2 tan^2  θ))=((1+μ^2 tan^2  θ)/(μ^2 +tan^2  θ))  μ^6 +2μ^4 tan^2  θ+μ^2 tan^4  θ+μ^4 tan^2  θ+2μ^2 tan^4  θ+tan^6  θ=(1−μ^2 )^2 tan^2  θ+μ^2 (1−μ^2 )^2 tan^4  θ  tan^6  θ+μ^2 (2+2μ^2 −μ^4 )tan^4  θ−(1−2μ^2 −2μ^4 )tan^2  θ+μ^6 =0  (tan^2  θ+1)[tan^4  θ−(1+μ^2 )(1−3μ^2 +μ^4 )tan^2  θ+μ^6 ]=0  ⇒tan^2  θ=(((1+μ^2 )(1−3μ^2 +μ^4 )+(√((1+μ^2 )^2 (1−3μ^2 +μ^4 )^2 −4μ^6 )))/2)  ⇒tan θ=(√((1−2μ^2 −2μ^4 +μ^6 +(1−μ^2 )(√(1−2μ^2 −5μ^4 −2μ^6 +μ^8 )))/2))=δ  Δ=1−2μ^2 −5μ^4 −2μ^6 +μ^8 ≥0  ⇒μ≤(√((1+2(√2)−(√(5+4(√2))))/2))≈0.531    tan ϕ=((μ^2 +tan^2  θ)/((1−μ^2 )tan θ))=((μ^2 +δ^2 )/((1−μ^2 )δ))  ⇒sin ϕ=((μ^2 +δ^2 )/(√((1+δ^2 )(μ^4 +δ^2 ))))    x_C =h=CD sin ϕ=((ab sin ϕ)/(√(a^2 cos^2  θ+b^2 sin^2  θ)))  (h/a)=((μ sin ϕ)/(√(μ^2 +(1−μ^2 )cos^2  θ)))  ⇒(h/a)=((μ(μ^2 +δ^2 ))/(√((1+μ^2 δ^2 )(μ^4 +δ^2 ))))    y_C =k=CA sin ϕ=((ab sin ϕ)/(√(a^2 sin^2  θ+b^2 cos^2  θ)))  (k/a)=((μ sin ϕ)/(√(1−(1−μ^2 )cos^2  θ)))  ⇒(k/a)=μ(√((μ^2 +δ^2 )/(μ^4 +δ^2 )))

$${let}\:\mu=\frac{{b}}{{a}} \\ $$$$\frac{{r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}{{a}^{\mathrm{2}} }+\frac{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${r}=\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}} \\ $$$$\frac{{x}}{{a}^{\mathrm{2}} }+\frac{{y}}{{b}^{\mathrm{2}} }×\frac{{dy}}{{dx}}=\mathrm{0}\:\Rightarrow\frac{{dy}}{{dx}}=−\frac{{b}^{\mathrm{2}} {x}}{{a}^{\mathrm{2}} {y}}=−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \:\mathrm{tan}\:\theta} \\ $$$$ \\ $$$${CA}={CB}=\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}} \\ $$$${CD}=\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}} \\ $$$$\mathrm{tan}\:\left(\varphi−\theta\right)=\frac{{dy}}{{dx}}=\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \:\mathrm{tan}\:\theta}=\frac{\mu^{\mathrm{2}} }{\mathrm{tan}\:\theta} \\ $$$$\frac{\mathrm{tan}\:\varphi−\mathrm{tan}\:\theta}{\mathrm{1}+\mathrm{tan}\:\varphi\:\mathrm{tan}\:\theta}=\frac{\mu^{\mathrm{2}} }{\mathrm{tan}\:\theta} \\ $$$$\Rightarrow\mathrm{tan}\:\varphi=\frac{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}{\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{tan}\:\theta} \\ $$$$ \\ $$$$\mathrm{tan}\:\varphi=\frac{{CB}}{{CD}}=\sqrt{\frac{{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}} \\ $$$$\Rightarrow\mathrm{tan}\:\varphi=\sqrt{\frac{\mathrm{1}+\mu^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}} \\ $$$$ \\ $$$$\frac{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}{\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{tan}\:\theta}=\sqrt{\frac{\mathrm{1}+\mu^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}} \\ $$$$\frac{\mu^{\mathrm{4}} +\mathrm{2}\mu^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta+\mathrm{tan}^{\mathrm{4}} \:\theta}{\left(\mathrm{1}−\mu^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}=\frac{\mathrm{1}+\mu^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta} \\ $$$$\mu^{\mathrm{6}} +\mathrm{2}\mu^{\mathrm{4}} \mathrm{tan}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{tan}^{\mathrm{4}} \:\theta+\mu^{\mathrm{4}} \mathrm{tan}^{\mathrm{2}} \:\theta+\mathrm{2}\mu^{\mathrm{2}} \mathrm{tan}^{\mathrm{4}} \:\theta+\mathrm{tan}^{\mathrm{6}} \:\theta=\left(\mathrm{1}−\mu^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \left(\mathrm{1}−\mu^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{tan}^{\mathrm{4}} \:\theta \\ $$$$\mathrm{tan}^{\mathrm{6}} \:\theta+\mu^{\mathrm{2}} \left(\mathrm{2}+\mathrm{2}\mu^{\mathrm{2}} −\mu^{\mathrm{4}} \right)\mathrm{tan}^{\mathrm{4}} \:\theta−\left(\mathrm{1}−\mathrm{2}\mu^{\mathrm{2}} −\mathrm{2}\mu^{\mathrm{4}} \right)\mathrm{tan}^{\mathrm{2}} \:\theta+\mu^{\mathrm{6}} =\mathrm{0} \\ $$$$\left(\mathrm{tan}^{\mathrm{2}} \:\theta+\mathrm{1}\right)\left[\mathrm{tan}^{\mathrm{4}} \:\theta−\left(\mathrm{1}+\mu^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{3}\mu^{\mathrm{2}} +\mu^{\mathrm{4}} \right)\mathrm{tan}^{\mathrm{2}} \:\theta+\mu^{\mathrm{6}} \right]=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}^{\mathrm{2}} \:\theta=\frac{\left(\mathrm{1}+\mu^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{3}\mu^{\mathrm{2}} +\mu^{\mathrm{4}} \right)+\sqrt{\left(\mathrm{1}+\mu^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{1}−\mathrm{3}\mu^{\mathrm{2}} +\mu^{\mathrm{4}} \right)^{\mathrm{2}} −\mathrm{4}\mu^{\mathrm{6}} }}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\sqrt{\frac{\mathrm{1}−\mathrm{2}\mu^{\mathrm{2}} −\mathrm{2}\mu^{\mathrm{4}} +\mu^{\mathrm{6}} +\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\sqrt{\mathrm{1}−\mathrm{2}\mu^{\mathrm{2}} −\mathrm{5}\mu^{\mathrm{4}} −\mathrm{2}\mu^{\mathrm{6}} +\mu^{\mathrm{8}} }}{\mathrm{2}}}=\delta \\ $$$$\Delta=\mathrm{1}−\mathrm{2}\mu^{\mathrm{2}} −\mathrm{5}\mu^{\mathrm{4}} −\mathrm{2}\mu^{\mathrm{6}} +\mu^{\mathrm{8}} \geqslant\mathrm{0} \\ $$$$\Rightarrow\mu\leqslant\sqrt{\frac{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}−\sqrt{\mathrm{5}+\mathrm{4}\sqrt{\mathrm{2}}}}{\mathrm{2}}}\approx\mathrm{0}.\mathrm{531} \\ $$$$ \\ $$$$\mathrm{tan}\:\varphi=\frac{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}{\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{tan}\:\theta}=\frac{\mu^{\mathrm{2}} +\delta^{\mathrm{2}} }{\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\delta} \\ $$$$\Rightarrow\mathrm{sin}\:\varphi=\frac{\mu^{\mathrm{2}} +\delta^{\mathrm{2}} }{\sqrt{\left(\mathrm{1}+\delta^{\mathrm{2}} \right)\left(\mu^{\mathrm{4}} +\delta^{\mathrm{2}} \right)}} \\ $$$$ \\ $$$${x}_{{C}} ={h}={CD}\:\mathrm{sin}\:\varphi=\frac{{ab}\:\mathrm{sin}\:\varphi}{\sqrt{{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}} \\ $$$$\frac{{h}}{{a}}=\frac{\mu\:\mathrm{sin}\:\varphi}{\sqrt{\mu^{\mathrm{2}} +\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{cos}^{\mathrm{2}} \:\theta}} \\ $$$$\Rightarrow\frac{{h}}{{a}}=\frac{\mu\left(\mu^{\mathrm{2}} +\delta^{\mathrm{2}} \right)}{\sqrt{\left(\mathrm{1}+\mu^{\mathrm{2}} \delta^{\mathrm{2}} \right)\left(\mu^{\mathrm{4}} +\delta^{\mathrm{2}} \right)}} \\ $$$$ \\ $$$${y}_{{C}} ={k}={CA}\:\mathrm{sin}\:\varphi=\frac{{ab}\:\mathrm{sin}\:\varphi}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}} \\ $$$$\frac{{k}}{{a}}=\frac{\mu\:\mathrm{sin}\:\varphi}{\sqrt{\mathrm{1}−\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{cos}^{\mathrm{2}} \:\theta}} \\ $$$$\Rightarrow\frac{{k}}{{a}}=\mu\sqrt{\frac{\mu^{\mathrm{2}} +\delta^{\mathrm{2}} }{\mu^{\mathrm{4}} +\delta^{\mathrm{2}} }} \\ $$

Commented by mr W last updated on 15/Apr/20

Commented by ajfour last updated on 15/Apr/20

 Thank you, Sir.

$$\:{Thank}\:{you},\:{Sir}. \\ $$

Commented by mr W last updated on 15/Apr/20

Commented by mr W last updated on 15/Apr/20

Commented by ajfour last updated on 16/Apr/20

Looks, and indeed, it is  BEAUTY  Sir!

$${Looks},\:{and}\:{indeed},\:{it}\:{is} \\ $$$$\mathcal{BEAUTY}\:\:\mathcal{S}{ir}! \\ $$

Answered by ajfour last updated on 15/Apr/20

Commented by ajfour last updated on 15/Apr/20

sir, something isn′t just clear  to me in this method...  I get 4 eqs.   while unknowns  are  p, q, m only. Please   resolve my doubt Sir.

$${sir},\:{something}\:{isn}'{t}\:{just}\:{clear} \\ $$$${to}\:{me}\:{in}\:{this}\:{method}... \\ $$$${I}\:{get}\:\mathrm{4}\:{eqs}.\:\:\:{while}\:{unknowns} \\ $$$${are}\:\:{p},\:{q},\:{m}\:{only}.\:{Please}\: \\ $$$${resolve}\:{my}\:{doubt}\:{Sir}. \\ $$

Commented by mr W last updated on 15/Apr/20

i went through your process and   could understand all steps. i didn′t  see where there is the logic fault. i′ll  keep thinking about it.

$${i}\:{went}\:{through}\:{your}\:{process}\:{and}\: \\ $$$${could}\:{understand}\:{all}\:{steps}.\:{i}\:{didn}'{t} \\ $$$${see}\:{where}\:{there}\:{is}\:{the}\:{logic}\:{fault}.\:{i}'{ll} \\ $$$${keep}\:{thinking}\:{about}\:{it}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com