Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 89052 by M±th+et£s last updated on 15/Apr/20

∫_0 ^(π/2) (x/(tan(x)))dx

0π2xtan(x)dx

Commented by abdomathmax last updated on 15/Apr/20

I =∫_0 ^(π/2)  (x/(tanx))dx ⇒I =_(tanx=t)    ∫_0 ^∞   ((arctan(t))/t)(dt/(1+t^2 ))  =∫_0 ^∞  ((arctan(t))/(t(1+t^2 )))dt  let f(a) =∫_0 ^∞ ((arctan(at))/(t(1+t^2 )))dt  f^′ (a) =∫_0 ^∞    (dt/((1+a^2 t^2 )(1+t^2 )))  =_(at=u)   ∫_0 ^∞    (du/(a(1+u^2 )(1+(u^2 /a^2 ))))(du/a)  =∫_0 ^∞    (du/((1+u^2 )(a^2  +u^2 ))) decomposition of  F(u) =(1/((u^2  +1)(u^2  +a^2 ))) =((αu +β)/(u^2  +1)) +((λu +ρ)/(u^2  +a^2 ))  F(−u)=F(u) ⇒  ((−αu +β)/(u^2  +1)) +((−λu +ρ)/(u^2  +a^2 )) =F(u) ⇒α=λ=0 and ρ=β ⇒  F(u)=(β/(u^2  +1)) +(ρ/(u^2  +a^2 ))  lim_(u→+∞)  u^2  F(u) =0 =β+ρ ⇒ρ=−β ⇒  F(u)=(β/(u^2 +1))−(β/(u^2  +a^2 ))  F(0)=(1/a^2 ) =β−(β/a^2 ) ⇒1 =a^2 β−β =(a^2 −1)β ⇒  β =(1/(a^2 −1)) ⇒F(u)=(1/(a^2 −1))((1/(u^2 +1))−(1/(u^2  +a^2 ))) ⇒  f^′ (a)=(1/(a^2 −1))∫_0 ^∞ ((1/(u^2  +1))−(1/(u^2  +a^2 )))du  ∫ (du/(u^2  +a^2 )) =_(u=az)   ∫ ((adz)/(a^2 (1+z^2 ))) =(1/a) arctan((u/a)) ⇒  f^′ (a) =(1/(a^2 −1))[arctanu −(1/a)arctan((u/a))]_0 ^(+∞)   =(1/(a^2 −1)){(π/2)−(π/(2a))} =(π/2)×(1/(a^2 −1))(1−(1/a))  =(π/(2(a^2 −1)))(((a−1)/a)) =(π/(2a(a+1))) ⇒  f(a) =(π/2) ∫  (da/(a(a+1))) +c  =(π/2)∫((1/a)−(1/(a+1)))da +c =(π/2)ln∣(a/(a+1))∣ +c  c  =lim_(a→+∞)   f(a)  I =f(1) =(π/2)ln((1/2)) +c =c−(π/2)ln(2)  rest to find c...

I=0π2xtanxdxI=tanx=t0arctan(t)tdt1+t2=0arctan(t)t(1+t2)dtletf(a)=0arctan(at)t(1+t2)dtf(a)=0dt(1+a2t2)(1+t2)=at=u0dua(1+u2)(1+u2a2)dua=0du(1+u2)(a2+u2)decompositionofF(u)=1(u2+1)(u2+a2)=αu+βu2+1+λu+ρu2+a2F(u)=F(u)αu+βu2+1+λu+ρu2+a2=F(u)α=λ=0andρ=βF(u)=βu2+1+ρu2+a2limu+u2F(u)=0=β+ρρ=βF(u)=βu2+1βu2+a2F(0)=1a2=ββa21=a2ββ=(a21)ββ=1a21F(u)=1a21(1u2+11u2+a2)f(a)=1a210(1u2+11u2+a2)duduu2+a2=u=azadza2(1+z2)=1aarctan(ua)f(a)=1a21[arctanu1aarctan(ua)]0+=1a21{π2π2a}=π2×1a21(11a)=π2(a21)(a1a)=π2a(a+1)f(a)=π2daa(a+1)+c=π2(1a1a+1)da+c=π2lnaa+1+cc=lima+f(a)I=f(1)=π2ln(12)+c=cπ2ln(2)resttofindc...

Commented by abdomathmax last updated on 15/Apr/20

let try  residus method  we?hsve  I?=∫_0 ^∞   ((arctan(t))/(t(1+t^2 )))dx⇒2I =∫_(−∞) ^(+∞)  ((arctan(t))/(t(1+t^2 )))dt    let ϕ(z)=((arctan(z))/(z(1+z^2 ))) ⇒ϕ(z) =((arctanz)/(z(z−i)(z+i)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ {Res(ϕ,i) +Res(ϕ,o)}  =2iπ×((arctan(i))/(i(2i))) =−iπ arctan(i)  but the frmula  arctan(z)=(1/(2i))ln(((1+iz)/(1−iz))) is not  valide for z=i...be continued...

lettryresidusmethodwe?hsveI?=0arctan(t)t(1+t2)dx2I=+arctan(t)t(1+t2)dtletφ(z)=arctan(z)z(1+z2)φ(z)=arctanzz(zi)(z+i)+φ(z)dz=2iπ{Res(φ,i)+Res(φ,o)}=2iπ×arctan(i)i(2i)=iπarctan(i)butthefrmulaarctan(z)=12iln(1+iz1iz)isnotvalideforz=i...becontinued...

Commented by M±th+et£s last updated on 15/Apr/20

thanx sir

thanxsir

Commented by mathmax by abdo last updated on 15/Apr/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com